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Abstract In quasi-integrable Hamiltonian systems, certain chaotic orbits become 
trapped around periodic islands for extended periods before escaping to the chaotic 
sea, a phenomenon known as stickiness. In fusion plasmas, the stickiness effect 
manifests in the prolonged trapping of magnetic field lines in a specific region for 
many toroidal turns, influencing plasma transport. We apply here a novel concept 
based on recurrence plots, revealing the existence of a hierarchical structure of islands 
around islands where chaotic orbits become trapped. This analysis is conducted for a 
Hamiltonian system describing the magnetic field lines in a Tokamak. Furthermore, 
utilizing this quantifier, we can distinguish between different levels of this structure 
and compute the cumulative distribution of trapping times. 

1 Introduction 

The phase space of quasi-integrable Hamiltonian systems often exhibits distinctive 
behaviors, characterized by the presence of regular and chaotic regions. Between 
these domains lies a transition layer, where regular and irregular motion can either 
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coexist or remain separate. This behavior depends on both the number of degrees 
of freedom in the system and the properties of the limiting surface. In the regular 
dynamics, orbits follow periodic and quasiperiodic trajectories on invariant tori, while 
chaotic orbits densely fill regions of the energy surface in phase space [ 1]. 

The intricate interplay of regular and chaotic orbits gives rise to unusual statisti-
cal properties for trajectories within the chaotic component of the phase space [ 2]. 
Additionally, this complex behavior leads to phenomena such as anomalous diffusion 
[ 3] and dynamic traps [ 4]. Plasma physics is a field where chaotic behavior plays a 
crucial role, particularly in the study of magnetic confinement plasmas [ 5]. Chaotic 
motion is prevalent in toroidal plasma devices like Tokamaks, where time-dependent 
perturbations lead to anomalous transport phenomena [ 6]. Therefore, comprehend-
ing the physical factors influencing chaotic transport is essential for the development 
of effective magnetic confinement devices. 

The mixed phase space leads to the formation of dynamical traps in the form of 
perforated tori, called cantori, near periodic islands, acting as intermittent transport 
barriers and forming sticky regions. The duration of orbit confinement within these 
sticky regions depends on the size of holes in the tori [ 7]. However, such trapping 
influences the long-term calculation of dynamical quantifiers, such as Lyapunov 
exponents. Therefore, a quantitative characterization of sticky behavior is crucial to 
comprehend its impact on time averages of dynamical quantities. Initial conditions in 
the chaotic region may experience different dynamical behavior, making it useful to 
consider a finite-time analysis of the evolution of these initial conditions to describe 
chaotic evolution accurately. 

In phase spaces with sticky regions, the Lyapunov exponent is not an optimal 
choice to detect chaotic orbits due to trapping around the islands, that causes its 
values to approach zero. Other methods, such as weighted Birkhoff averages [ 8], 
the 0-1 test [ 9], SALI and GALI [ 10], etc., have been proposed to circumvent this 
problem. However, these methods often require long time series for reliable accuracy. 
In cases where only a short time series is available, recurrence quantification analysis 
(RQA) [ 11– 14] is preferred. 

In this work, we employ a RQA based on an intrinsic property of the dynamical 
system: Slater’s theorem [ 15, 16], which states that quasiperiodic orbits lying on 
invariant circles can have at most three different return times. By defining a region 
of recurrence and counting the time it takes for the orbit to return to this region, we 
obtain recurrence times and are able to construct the recurrence plots. Recurrence 
plots (RP) are used to find the recurrence in a time series. They also are used to 
estimate recurrence times, with white vertical lines in the RP serving as a lower 
estimate of recurrence time [ 17– 19]. 

In the pursuit of controlled thermonuclear fusion, the Hamiltonian description is 
employed to study magnetic field lines in Tokamaks [ 20]. In the context of a sym-
metric magnetohydrodynamical equilibrium, the magnetic field lines are governed 
by the Hamiltonian canonical equations, where the ignorable coordinate takes the 
role of time. This treatment allows the complex dynamics of the magnetic field lines 
to be effectively described using symplectic two-dimensional nonlinear maps. The 
main objective of the present work is to develop and apply methods to clearly differ-
entiate between sticky and non-sticky orbits. We shall accomplish this task by using
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recurrence-based quantifies, which provide robust tools for analyzing the temporal 
patterns and spatial quantities within the phase space and allow us to obtain a deeper 
insight of the underlying mechanism of stickiness in Hamiltonian systems. 

We used RPs to characterize the dynamics of a nonlinear system, applying RQA 
to identify regular, chaotic, and sticky regions in a magnetic field lines model called 
Tokamap [ 21]. The stickiness effect changes the escape times of trajectories, impact-
ing the effective transport fluxes [ 22]. The RQA indicator we choose is based on the 
Shannon entropy of recurrence times, known as the recurrence time entropy (.RTE) 
[ 23, 25], originally proposed without any connection to RPs. 

This paper is organized as follows: in Sect. 2 the area-preserving two-dimensional 
map proposed to investigate the magnetic field line structure is presented. In Sect. 3 
the quantifier based on recurrence time is introduced. In Sect. 4 we discuss the appli-
cation of the recurrence time entropy to the study of stickiness in the Tokamap. 
Finally, in the last Section, we report our conclusions. 

2 Magnetic Field Line Map 

Tokamaks are toroidal devices for magnetic confinement of fusion plasmas. They 
are considered as promising candidates for maintaining thermonuclear fusion with 
the goal of energy production. This hope is the chief stimulus behind the ITER 
(International Thermonuclear Energy Reactor) project, an international collaboration 
involving.35 countries whose goal is to build the largest Tokamak in the world, with 
an estimated .∼500MW of fusion power. ITER, currently being assembled in the 
southern France, is the most expensive science experiment ever, and is expected to 
start its operation in 2034. 

In spite of its inherent complexity and huge size, the physical principles underlying 
the Tokamak concept are relatively simple. A toroidal plasma is confined using two 
magnetic fields: a toroidal field .BT generated by external coils, and the poloidal 
field.BP , created by the plasma current. The resulting field.B = BT + BP has helical 
magnetic lines of force lying on nested tori called magnetic surfaces. Under fairly 
general symmetry conditions, we can define a flux function . ψ which has a constant 
value on a magnetic surface: .B · ∇ψ = 0. 

The coordinates used to locate magnetic field lines in a Tokamak are illustrated in 
Fig. 1a. The magnetic axis is a degenerate magnetic surface, and .R0 is the distance 
between the magnetic axis and a vertical axis. The toroidal angle. ζ is measured along 
the long way around the torus, whereas the (normalized by.2π) poloidal angle. θ goes 
along the short way. If we consider a fixed plane at .ζ = 0, the field line position 
therein is described by coordinates.(r, θ) with its center on the magnetic axis Fig. 1b. 
The flux function. ψ is the remaining coordinate, such that the plasma edge is located 
at .ψ = 1, whereas .ψ = 0 is the magnetic axis position.



98 R. L. Viana et al.

Fig. 1 a Coordinate system 
for magnetic field lines in a 
Tokamak; b a cross section 
at .ζ = 0 plane 

Using the coordinates.(ψ, θ, ζ), the magnetic field line equations can be expressed 
in a form which resembles Hamilton’s equation 

.
dψ

dζ
= −∂H

∂θ
, (1) 

.
dθ

dζ
= ∂H

∂ψ
, (2) 

where .(ψ, θ) are the canonical variables, . ζ plays the role of time, and .H is the field 
line Hamiltonian. In a symmetrical configuration the latter does not depend on the 
“time” . ζ, and the one-degree-of-freedom system is thus integrable. 

Moreover, .H depends only on . ψ, such that .(ψ, θ) are action-angle variables, and 
the Hamilton’s equations read 

.
dψ

dζ
= 0, (3) 

.
dθ

dζ
= dH

dψ
≡ 1

q(ψ)
, (4) 

with the so-called safety factor as 

.q(r) = r B0

R0Bθ(r)
, (5) 

where .B0 is the toroidal field at magnetic axis, and .Bθ(r) is the poloidal field as 
a function of radius . r . The magnetic surfaces in this approximation are coaxial 
cylinders with .ψ = (r/a)2. A safety factor radial profile consistent with Tokamak 
magnetic field and Ohmic discharge is [ 26] 

.q(ψ) = 4q0
(2 − ψ)(2 − 2ψ + ψ2)

, (6) 

where .q0 = q(ψ = 0) = 1. We also choose .q(ψ = 1) = 4 at plasma edge.
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In a Tokamak, the presence of instabilities or external magnetic fields causes per-
turbations in the magnetic field lines, breaking their symmetry and allowing chaotic 
motion. These perturbations can be described by a non-integrable Hamiltonian, and if 
the perturbation is small, the Hamiltonian can be approximated as a quasi-integrable 
system, 

.H(ψ, θ, ζ) =
∫ ψ

0

dψ′

q(ψ′)
+ εH1(ψ, θ, ζ), (7) 

where . ε is the perturbation amplitude. Integrating the canonical equations (1)–(2) 
for the Hamiltonian (7) gives the magnetic field lines in the non-symmetric system. 
The numerical integration the equations can be very costly for long times, however, a 
considerable simplification arises from using a Poincaré section. This can be obtained 
by sampling the coordinates.(ψn, θn) of the. nth intersection of a given magnetic field 
line with the .ζ = 0 plane. It results in a two-dimensional mapping with discrete 
time . n. The magnetic Gauss law .∇ · B = 0 implies that the magnetic flux must 
be conserved, meaning that the mapping must be area-preserving. Moreover, . ψ =
(r/a)2 implies that .ψ ≥ 0 for all . n. 

A paradigmatic field line map was proposed by Balescu and coworkers, the 
Tokamap [ 21], which satisfies all the conditions listed above. The equations of motion 
are given by, 

.ψn+1 = 1

2

{
P(ψn, θn) +

√
[P(ψn, θn)]2 + 4ψn,

}
, (8) 

.P(ψn, θn) = ψn − 1 − k

2π
sin(2πθn), (9) 

.θn+1 = θn + 1

q(ψn)
− k

4π2

1

(1 + ψn+1)
2 cos(2πθn) (mod 1) (10) 

.q(ψ) = 4

(2 − ψ)(2 − 2ψ + ψ2)
, (11) 

where . k is a variable parameter representing the strength of the non-symmetrical 
perturbation acting on the Tokamak. In a real setting, this perturbation is created by 
a magnetic field generated by helical windings, so . k can be considered proportional 
to the current flowing through the windings [ 27]. The tokamap adheres to physical 
requirements, while the perturbation is simplified by using only a sinusoidal term. 
More general perturbations can be viewed as expansions in trigonometric functions, 
making the tokamap a simple, yet representative model of more complex scenarios 
found in physical applications. 

Iterating the map (8)–(10), we have in the case of no perturbation (.k = 0), 
.P(ψn) = ψn − 1 and the Tokamap reduces to a simple twist map, which describes 
an integrable system, as shown in Fig. 2a. When . k is small, the phase space is com-
posed of invariant curves with some degree of distortion and also some periodic 
island chains, Fig. 2b. As the perturbation increases, the chaotic region surrounding 
the islands chains expands, Fig. 2c. A subsequent further increase in the perturbation
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Fig. 2 Phase space of the Tokamap with .1500 map iterations for .k = 0.0 in (a), .k = 3.0 in (b), 
.k = 5.0 in (c) and.k = 2π in (d) 

causes the chaotic region to span the entire phase space, yet certain periodic islands 
persist within the chaotic sea, Fig. 2d. 

Some chaotic orbits spend a considerable amount of time around periodic islands, 
exhibiting the stickiness effect, as we can observe around the islands of period three in 
Fig. 2d. Although a sticky orbit is also chaotic and area-filling, it occupies a slimmer 
region of the phase space. 

3 Recurrence Time Entropy 

Given a time series corresponding to a map orbit .xi = (ψi , θ j )
ᵀ (.i = 1, 2, . . . , N ), 

the corresponding recurrence matrix elements are defined as 

.Ri j = Θ(ε − ‖xi − x j‖), (12) 

where .N is the length of the time series, . ε is the threshold parameter, .Θ is the 
Heaviside function, and .‖xi − x j‖ is the spatial distance between two states at at
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different times . i and . j , here calculated with the supremum (or maximum) norm. 
The Euclidean norm could also be used, yielding similar results [ 13]. However, 
considering a fixed threshold . ε, the maximum norm is computationally faster than 
the Euclidean norm. Recurrence plots (RP) are graphical representations of this 
recurrence matrix [ 28]. 

The matrix .R is symmetric and binary, whose elements are equal to . 1 when the 
two states are recurrent and . 0 otherwise. If the threshold . ε is too large, we would 
record too many recurrences, resulting in a barely distinguishable RP. On the other 
hand, for a too small . ε, recurrences would be rarely observed. A good compromise 
is to consider . ε to be .10% of the time series standard deviation . σ [ 13, 29], a more 
systematic study on this selection can be found in [ 30]. 

The recurrent states are represented by colored dots in the RP, and display var-
ious diagonal structures. In Fig. 3a the phase space for three initial conditions is 
shown with the corresponding recurrence matrix for the first .1000 iterations of (b) 
a quasiperiodic orbit, (c) a chaotic orbit, and (d) a sticky orbit of the Tokamap (8)– 
(10) with .k = 3π/2. The RP of a quasiperiodic orbit is composed of uninterrupted 
diagonal lines. The vertical distances between these lines display a regularity and 

Fig. 3 a Phase space with a quasiperiodic orbit (yellow), a chaotic orbit (black), and a sticky orbit 
(red) of the Tokamap with .k = 3π

2 . Recurrence matrix of the b quasiperiodic orbit, c the chaotic 
orbit, and d the sticky orbit for the first.1000 iterates of the map
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correspond to the different return times of the orbit [ 17– 19]. The RP of a chaotic 
orbit displays short diagonal lines, and the vertical distances between them are not 
as regular as in the quasiperiodic case. In the RP of a sticky orbit, the diagonal lines 
present some level of regularity, with intermediary size of these lines. 

Numerous dynamical quantifiers rely on RP structures, based on diagonal line 
lengths (. l) and vertical line lengths (. ν), such as determinism, laminarity, recurrence 
rate, and various others, constituting a rich array of tools derived from RPs for 
dynamical analysis [ 11]. There are also, quantifiers based on the Shannon entropy 
of the diagonal line lengths [ 31], 

.S = −
lmax∑
l=lmin

p(l) ln p(l), (13) 

where .lmax (.lmin) is the length of the longest (shortest) diagonal line, in this work, 
we consider .lmin = 1, .p(l) = P(l)/Nl and .P(l) are the relative distribution and 
the total number of line segments with length . l, respectively, and .Nl is the total 
number of line segments, .P(l) is the frequency distribution (or histogram). Given 
that the vertical distance between the lines is an estimate of the recurrence times of 
an orbit, we consider the Shannon entropy using the “white” vertical lines of the RP 
in (13) [  17, 23]. The total number of white vertical lines (recurrence times) of length 
. ν is given by 

.pw(ν) =
N∑

i, j=1

Ri j Ri j+ν

ν−1∏
k=0

(1 − Ri j+k). (14) 

An emerging idea suggests using the recurrence time distribution derived from 
recurrence plots for identifying regions associated with stickiness, as proposed 
in [ 23, 32]. For this purpose, we define the Recurrence Time Entropy .RTE, 

.RTE = −
νmax∑

ν=νmin

pw(ν) ln pw(ν). (15) 

The.RTE is able to characterize the dynamics as a consequence of Slater’s theorem, 
that states that for any irrational linear rotation, with rotation number . ω over a unit 
circle, there are at most three different return times to a connected interval of size 
.δ < 1. By counting the number of return times (or recurrence times) or in this case 
the white vertical lines, we can distinguish between the different kinds of solutions 
of a nonlinear system. If it is one, the orbit is periodic, what correspond to.RTE = 0, 
and if it is equal to three, the orbit is quasiperiodic, resulting in a small .RTE. If the  
number of return times is larger than three, then the orbit is chaotic, corresponding 
to a large.RTE. The sticky orbit spends a long time in the neighborhood of an island 
in which it exhibits a motion similar to quasiperiodic dynamics. This was seen in the 
recurrence matrix, Fig. 3d. Thus, the.RTE of sticky orbits is smaller than the chaotic 
ones, but higher than a quasiperiodic orbit.
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Fig. 4 a Recurrence time entropy and b largest Lyapunov exponent, for the Tokamap with. k = 4.5
iterated for.N = 103 times 

In Fig. 4, we show the .RTE (a) and the largest Lyapunov exponent .λmax (b) for 
an uniform distributed mesh of initial conditions of the Tokamap with .k = 4.5. The  
Lyapunov exponent was computed using the method of Eckmann-Ruelle [ 33], where 
the Jacobian matrix is written as the product of an orthogonal matrix and an upper 
triangular matrix. The Jacobian becomes a triangular matrix itself, whose eigenvalues 
are its diagonal elements. Therefore, the Lyapunov exponents can be expressed in 
terms of these diagonal elements. 

The .RTE and the Lyapunov exponents are visually correlated [ 23, 24]. In the 
chaotic sea, .λmax is large and so is the .RTE. In the islands, .λmax goes to zero and 
the .RTE is low. Furthermore, in the neighbourhood of the islands the .RTE takes 
on intermediary values, indicating that in these regions the orbits get trapped. In 
Hamiltonian systems the Lyapunov exponent has a slow convergence rate [ 1] and 
the trapping of chaotic orbits around quasiperiodic regions causes the Lyapunov 
exponent to be close to zero, resembling the quasiperiodic behaviour. Since the. RTE
clearly distinguishes between quasiperiodic and chaotic orbits, even considering 
small time series [ 32], it is a better quantifier of the dynamics. 

4 Stickiness, Recurrence Time Entropy, and Trapping 
Time Distribution 

It is possible to consider recurrence plots to characterize the stickiness effect [ 32, 34]. 
In this work, we apply one such characterization to the Tokamap, by considering the 
evolution of a single chaotic orbit using the parameter value .k = 3π/2 for conve-
nience (other values of. k would result in qualitatively similar results). For long times, 
a single chaotic orbit fills in a region of the phase space, approaching a large number 
of periodic islands and staying there for a long but finite time, before escaping to 
the chaotic region. Thus, it is better to consider a finite-time RTE with .n � N so
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as to understand the transition between different dynamical regimes. We calculated 
the.RTE for a single chaotic orbit in windows of size. n, .RTE(i)(n) .i = 1, 2, . . . , M , 
where .M = N/n, and define the probability distribution of the finite-time .RTE, 
.P(RTE(n)), by computing a frequency histogram of .RTE(i)(n) such as the one 
shown in Fig. 5a for  .N = 1011 and .n = 200. Given that the orbit visits different 
sticky regions with varying trapping times, we chose a very long orbit with. N = 1011

iterations. The choice of . n is arbitrary; choosing a large value could mix stickiness 
and the chaotic sea; on the other hand, taking a small value highlights local fluctu-
ations. We found that .n = 200 is a good compromise for describing the tokamap. 
The same methodology was employed to detect the stickiness region in an . E × B
model [ 35]. The changes in the .RTE(200) values indicates changes of dynamical 
behaviour, which are the causes of the many modes observed in the corresponding 
probability distribution. 

In Fig. 5b, we show the phase space position .(ψ, θ) for the .RTE(200) time series 
with different colours corresponding to different ranges of .RTE(200). The colours 
match the distinct peaks depicted in Fig. 5a, such that each peak is related to a different 

Fig. 5 a Finite-time .RTE distribution for a single chaotic orbit, with .n = 200 .N = 1011, and  
.k = 3π/2. b The phase space points that generate the small .RTE(200) values peaks in (a). c is a 
magnification of the region indicated by the black dashed lines. d The phase space that generate the 
larger peak for high values of.RTE in the distribution
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region of trapping. The stickiness effect happens when the orbit gets trapped inside 
one of the levels of a hierarchical structure of island-around-islands. This structure 
correspond to the multi-modal distribution of.RTE(200), where the largest maximum 
correspond to a high .RTE value, so the orbit is in the chaotic sea. When the orbit is 
trapped near an island, the .RTE is low and the distribution exhibits smaller peaks, 
for each level of this structure. 

The recurrence time entropy.RTE is able to distinguish among the different regions 
where the orbit gets trapped for some time, as well the fully chaotic region of the 
phase space. The red and yellow peaks correspond to regions that trace the stable and 
unstable manifolds in the region where the trapped particles leave the sticky region 
[cf. Fig. 5c]. In Fig. 5d are shown the phase space points corresponding to the largest 
peak in the distribution, i.e., the hyperbolic (non-sticky) part of the chaotic orbit. 

Systems where the stickiness effect is present exhibit a bi-modal distribution of 
finite-time Lyapunov exponents (FTLE) [ 36], consisting of two peaks: one represent-
ing the chaotic component of the orbit and the other corresponding to the stickiness 
when the orbit is trapped. Harle and Feudel [ 37] suggested that the stickiness peak 
is actually composed of multiple peaks, each representing a different level of the 
hierarchical structure of islands-around-islands. The .RT E allows us to obtain this 
multi-modal distribution and differentiate the various levels of stickiness in the phase 
space. Moreover, it is possible to measure the time spent in each sticky region, i.e. 
the time between two consecutive abrupt changes in the .RTE, by the recurrence 
quantification measure trapping times [ 11]. 

We consider the boundary of each peak, defined by the filling colors, as the 
limits of each sticky region in the Fig. 5a. From the .RTE(200) time series, we com-
pute the probability distribution of trapping times .P(t) for the set of trapping times 
.{ti }i=1,2,...,Nt , where.Nt is the total number of trapping times. Additionally, with.P(t), 
we define the cumulative distribution of trapping times as 

.Q(τ ) =
∑
t>τ

P(t) = Nτ

Nt
, (16) 

where.Nτ is the number of trapping times with.t > τ . Figure 6a depicts the cumulative 
distribution of trapping times as a function of . τ for each stickiness regime. The 
decay of trapping times obeys a power-law, with a heavy tail, which is known to 
be a characteristic of quasi-integrable Hamiltonian systems with stickiness [ 2]. On 
the other hand, the hyperbolic (non-sticky) region of the phase space exhibits an 
exponential decay of trapping times [Fig. 6b].
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Fig. 6 Cumulative distribution of trapping times for: a an orbit belonging to the hyperbolic region 
shown in Fig. 5d; b each sticky region identified in Fig. 5a with.N = 1011 and.n = 200 (the colors 
of the dots in correspond to the colors in Fig. 5a) 

5 Conclusions 

Stickiness is a typical phenomenon observed in chaotic (area-filling) orbits of non-
integrable Hamiltonian systems. Chaotic orbits spend arbitrarily long times in the 
vicinity of periodic islands and eventually escape from them. Since the periodic 
islands display a complicated hierarchical structure, a sticky orbit visits the neigh-
bourhoods of a large number of islands. It is a well-known challenge to characterize 
numerically sticky orbits: there have been proposed approaches based on finite-time 
Lyapunov exponents and finite-time rotation numbers. Recently, a novel approach 
using recurrence-based quantifiers has been proposed, particularly the distribution of 
white vertical lines in recurrence plots. From the latter, we can compute the Shannon 
(or recurrence time) entropy RTE. 

We have applied this method to quantify dynamical properties of sticky chaotic 
orbits in a discrete-time mapping obtained from a plasma physics model of magnetic 
field lines in a Tokamak. As a general result, we find that the value of RTE is able to 
better characterize the nature of the orbits generated from this mapping, when com-
pared with the largest Lyapunov exponent. Moreover, the hierarchical structure of 
islands around islands can be revealed by computing the finite-time RTE, whose sta-
tistical distribution displays a number of distinct peaks, each of them corresponding 
to the different islands visited by the sticky orbit. 

We have also computed the trapping times, or the times spent by a sticky orbit 
in the vicinity of a given periodic island, and analysed their cumulative distribution. 
We discovered that the sticky behavior causes this distribution to decay as a power-
law with the trapping time, whereas a hyperbolic chaotic orbit (with no stickiness) 
presents an exponential decay. The combination of RTE with the statistics of trapping 
times makes a powerful tool to characterize sticky behavior of chaotic orbits in 
Hamiltonian systems. Although in the present work, we have considered a specific 
mapping, the method and its basic features are expected to be applicable to any 
Hamiltonian system of physical interest.
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