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Motivation
The phase space of a two-dimensional integrable
Hamiltonian system features periodic and quasiperi-
odic invariant tori. According to the Kolmogorov-
Arnold-Moser (KAM) theorem, weak perturbations
preserve irrational tori (KAM tori) but destroy ra-
tional ones, leading to chaotic motion near hyper-
bolic fixed points and stability islands around ellip-
tical points. Increasing perturbations further break
down KAM tori into cantori, which act as partial bar-
riers and cause intermittent quasiperiodic behavior
known as stickiness. This complex structure impacts
the transport and statistical properties of particles in
phase space. Recently, the Hamiltonian ratchet ef-
fect, a preferential transport direction without exter-
nal bias, has been observed. In this study, we ex-
amine transport and diffusion in a nontwist map-
ping relevant to toroidal plasmas. We analyze sur-
vival probabilities, escape dynamics, and recurrence
times, demonstrating unbalanced stickiness in phase
space and confirming the ratchet effect. Addition-
ally, we explore diffusion scaling properties, provid-
ing a robust analysis of observed scaling invariance.

The model
We consider the following nontwist mapping intro-
duced in the context ofE×B drift in toroidal plasmas:
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where q(I), E(I), and v(I) are given by, respec-
tively,
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Figure 1. The phase space for � = 1.0 × 10−3.

Directed transport

Figure 2. Fraction of initial conditions that escape through the
(red) bottom exit and the (blue) top exit as a function of the exits
position with (a) " = 1.0 × 10−3, (b) " = 2.0 × 10−3, and (c)
" = 3.0 × 10−3.

Figure 3. (a) The average of the action for an ensemble of 106
initial conditions randomly distributed on the line I = 1.0×10−10
at n = 0 for different values of ". (b) The cumulative distribution
of recurrence times for the (full lines) top (I > 0) and (dashed
lines) bottom (I < 0) regions of phase space. (c) Moments of the
distribution of recurrence times normalized to ⟨t⟩.

Scaling law
The observable of interest is the square root of the
averaged squared action, defined by
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The behavior of Irms can be characterized by four
critical exponents, �, �,  , and z assuming the fol-
lowing scaling hypotheses:

1. Irms ∼ (n"�)� for n ≪ nx,
2. Irms,sat ∼ " for n ≫ nx,
3. nx ∼ "z.

These critical exponents are related through the fol-
lowing scaling law

z =

�
− �.

Figure 4. (a) The behavior of Irms for different values of ". The
colored dots indicate the transition point from the growth regime
to the constant plateau of staturation. (b) The overlap of all curves
into a single, and hence, universal curve after the transformation
n → n∕"z and Irms → Irms∕" .

Summary and overview
• We have demonstrated that particles escape evenly

through both the bottom and top exits when there are
no stability islands in the escape region.

• The presence of stability islands in the escape region
creates an unbalanced stickiness effect, which leads to
the generation of a ratchet current in phase space.

• This unbalanced stickiness is caused by the inherent
asymmetry of the system, resulting in different distribu-
tions of recurrence times in the top (I > 0) and bottom
(I < 0) regions of phase space.

• Based on three scaling hypotheses, we have found that
diffusion in phase space is characterized by four critical
exponents.

• We have derived a scaling law that relates these four
exponents, and through extensive numerical simula-
tions, we have obtained all of them, showing remarkable
agreement with the scaling law.
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