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Motivation
In two-dimensional quasi-integrable Hamiltonian systems with hierarchical phase
space, chaotic orbits can spend an arbitrarily long time around islands, in which
they behave similarly as quasiperiodic orbits. This phenomenon is called sticki-
ness, and it is due to the presence of partial barriers to the transport around the hi-
erarchical levels of islands-around-islands. The stickiness affects the convergence
of the Lyapunov exponents, making the task of characterizing the dynamics more
difficult, especially when only short time series are known. Due to the intrinsic
property of dynamical systems that quasiperiodic orbits lying on invariant circles
can have at most three different return times, we propose the use of the recur-
rence time entropy (RTE) (estimated from the recurrence plots) to characterize
the dynamics of nonlinear systems.

The standard map
The standard map is an area-preserving map, and its dynamics is given by

pn+1 = pn − k sin �n,
�n+1 = �n + pn+1,

(1)

where pn and �n are the canonical momentum and position, respectively, at dis-
crete times, and k controls the nonlinearity of the system. In spite of its simple
mathematical form, the standard map exhibits all the features of a typical quasi-
integrable Hamiltonian system.

Recurrence plots
The recurrence plot (RP) is a graphical representation of the recurrences of a
time series of a given dynamical system. Given a trajectory xi ∈ ℝd , with i =
1, 2,… , N andN is the length of the times series, the recurrence matrix is defined
as

Rij = H(� − ‖xi − xj‖ ), (2)
where H(⋅) is the Heaviside unit step funtion, � is a small threshold and ‖xi − xj‖is the distance between the states i and j in the d-dimensional phase space in terms
of a suitable norm.

Figure 1. (a) (blue) A quasiperiodic orbit, (black) a chaotic orbit, and (red) a sticky orbit of the
standard map with k= 1.5. (b)-(d) are the corresponding recurrence matrices for the first 1000 iterates.

The recurrence time entropy
The white vertical lines in an RP are an estimate of the recurrence times of an
orbit. Therefore, we compute the recurrence time entropy (estimated from the
RP), RTE, to characterize the dynamics of the orbit as follows:

RTE = −
lmax
∑

l=lmin

p(l) ln p(l), (3)

where, p(l) = P (l)∕Nl is the relative distribution of white vertical lines with
length l. For periodic orbits, we expect RTE = 0. A quasiperiodic orbit has a low
value of RTE, whereas a chaotic orbit is characterized by a large value of RTE.

Figure 2. (a) The largest Lyapunov exponent and (b) the RTE for the standard map [Eq. (1)], as a
function of the nonlinearity parameter k with initial condition (�0, p0) = (0.0, 1.3) and time series
length of N = 5000. The correlation coefficient between �1 and RTE is � = 0.95 for the data in (a)
and (b).

Figure 3. (a) The finite-time RTE distribution for a single chaotic orbit with k = 1.5. (b) The “time
series” of the finite-time RTE shown in (a). (c) The phase space points that generate the colored peaks
in (a); (d) is a magnification of one of the period-6 satellite islands in (c), indicated by the gray dashed
lines. (e) The phase space points that generate the larger (black) peak in (a). (f) The cumulative
distribution of trapping times, Q(�), for each sticky region identified in (a). The inset is a log-lin plot
of Q(�) for the trapping times that generate the larger (black) peak in (a).

Summary and overview
• It is possible to distinguish between chaotic and regular solutions using the RTE.
• The peak for small values of �1 in the finite-time Lyapunov exponent distribution is, in

fact, composed of several minor peaks, as suggested by Harle and Feudal.
• Each peak in the finite-time RTE distribution corresponds to a different hierarchical

level in the islands-around-islands structure embedded in the chaotic sea.
• Can the RTE characterize the parameter space of dissipative systems?
• Can the RTE characterize the dynamics of higher dimensional systems?
• Can we define an upper bound for the RTE?
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