Transporte direcionado e leis de escala em um mapeamento Hamiltoniano não-*twist*

Matheus Rolim Sales1

Daniel Borin, Leonardo Costa de Souza, José Danilo Szezech Jr., Ricardo Luiz Viana, Iberê Luiz Caldas, Edson Denis Leonel

¹Universidade Estadual Paulista "Júlio de Mesquita Filho"

17 de Julho de 2024

O mapeamento

Consideramos o mapeamento não-*twist* introduzido no contexto do movimento de deriva $\mathbf{E} \times \mathbf{B}$ de partículas carregadas¹:

$$I_{n+1} = I_n + \varepsilon \operatorname{sen}(2\pi\theta_n),$$

$$\theta_{n+1} = \theta_n + \mu v(I_{n+1}) \left[\frac{M}{q(I_{n+1})} - L \right] + \rho \frac{E(I_{n+1})}{\sqrt{|I_{n+1}|}} \mod 1,$$
(1)

onde q(I), E(I), e v(I) são dados por

$$\begin{aligned} q(I) &= q_1 + q_2 I^2 + q_3 I^3, \\ E(I) &= e_1 I + e_2 \sqrt{|I|} + e_3, \\ v(I) &= v_1 + v_2 \tanh(v_3 I + v_4). \end{aligned}$$

O parâmetro de controle é a perturbação $\varepsilon \ge 0$ e tanto os demais parâmetros quanto os perfis na Eq. (2) foram escolhidos de acordo com medidas realizadas no tokamak TCABR no Instituto de Física da Universidade de São Paulo².

¹W. Horton et al., *Physics of Plasmas*, 1998, **5**, 3910–3917; L. C. Souza et al., *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 2023, **33**, 083132; L. C. Souza et al., *Phys. Rev. E*, 2024, **109**, 015202.

²I. C. Nascimento et al., Nuclear Fusion, 2005, 45, 796.

O espaço de fase

Figura 1: O espaço de fase para (a) $\varepsilon = 1.0 \times 10^{-3}$, (b) $\varepsilon = 2.0 \times 10^{-3}$, (c) $\varepsilon = 3.0 \times 10^{-3}$. Os pontos vermelhos correspondem aos pontos elípticos localizados no centro das ilhas de estabilidade de período 1.

Probabilidade de sobrevivência

Figura 2: As regiões delimitadas pelas linhas horizontais correspondem às regiões de sobrevivência. Matematicamente, a probabilidade de sobrevivência é definida por

$$P(n) = \frac{N_{\text{surv}}(n)}{M},$$
(3)

onde $N_{\text{surv}}(n)$ é o número de partículas que sobreviveram até o tempo *n*, isto é, que não escaparam e $M = 1 \times 10^6$ é o número total de partículas.

Para sistemas completamente caóticos, a probabilidade de sobrevivência segue um decaimento exponencial:

$$P(n) = P_0 \exp(-\kappa n), \tag{4}$$

onde κ é a taxa de decaimento.

Probabilidade de sobrevivência

Figura 3: (a) Probabilidade de sobrevivência para diferentes regiões de sobrevivência com $\varepsilon = 1.0 \times 10^{-3}$. (b) A taxa de escape κ em função do tamanho da região de escape. (c) A sobreposição da probabilidade de sobrevivência em uma única curva universal após a transformação $n \to n I_{esc}^{\xi}$.

Tempos e bacias de escape

Figura 4: Tempos e bacias de escape para diferentes regiões de sobrevivência.

Tempos e bacias de escape

Tabela 1: Fração de condições iniciais que escapam por baixo (p_B) , por cima (p_T) , e que nunca escapam (p_{∞}) calculada através das bacias de escape da Fig. 4.

Fig. 4	$p_{\rm B}$	p_{T}	p_{∞}	$p_{\rm B}/p_{\rm T}$
(a ₂)	0.498364	0.501601	0.000035	0.993548
(b ₂)	0.513745	0.484148	0.002107	1.061132
(c ₂)	0.502372	0.467406	0.030222	1.074810
(d ₂)	0.606776	0.327269	0.065954	1.854058

Tempos e bacias de escape: efeito catraca³

³T. Dittrich et al., Annalen der Physik, 2000, **512**, 755–763; H. Schanz et al., Phys. Rev. Lett., 2001, **87**, 070601; J. Gong e P. Brumer, Phys. Rev. E, 2004, **70**, 016202.

Tempos de recorrência e efeito catraca

$$Q(\tau) = \sum_{t>\tau} P(t) = \frac{N_{\tau}}{N_t}.$$
(5)

$$\langle t^m \rangle = \int_0^{t_{\max}} t^m P(t) \,\mathrm{d}t \,. \tag{6}$$

Tabela 2: O tempo de recorrência médio para diferentes valores de ϵ para as regiões superior e inferior do espaço de fase.

ε	$\langle t \rangle^{(\mathrm{U})}$	$\langle t \rangle^{(L)}$	$\langle t\rangle^{(\mathrm{L})}-\langle t\rangle^{(\mathrm{U})}$
1.0×10^{-3}	1.31×10^2	1.51×10^2	0.20×10^2
2.0×10^{-3}	1.02×10^2	1.33×10^2	0.31×10^2
3.0×10^{-3}	0.83×10^2	1.21×10^2	0.38×10^2

Expoentes críticos e lei de escala

Analisamos a difusão de partículas caóticas no espaço de fase através do desvio quadrádico mé- $\int_{\underline{e}}^{\underline{e}}$ dia da ação, $I_{\rm rms}$, definido por

$$I_{\rm rms} = \sqrt{\frac{1}{M} \sum_{i=1}^{M} \frac{1}{n} \sum_{j=1}^{n} I_{ij}^2}$$
(7)

Figura 7: $I_{\rm rms}$ em função do tempo para diferentes valores de ε .

Expoentes críticos e lei de escala

Figura 7: $I_{\rm rms}$ em função do tempo para diferentes valores de ϵ .

1. Para $n \ll n_x$, $I_{\rm rms}$ segue a seguinte lei

$$I_{\rm rms} \sim (n\varepsilon^{\alpha})^{\beta}.$$
 (8)

2. Para $n \gg n_x$ a curva satura e o valor de saturação depende de ε de acordo com

$$I_{\rm rms,sat} \sim \epsilon^{\gamma}$$
. (9)

 O ponto onde ocorre a mudança de comportamento é identificado por n_x e segue

$$n_x \sim \epsilon^z$$
. (10)

4. O expoente *z* pode ser escrito em função dos demais expoentes como

$$z = \frac{\gamma}{\beta} - \alpha. \tag{11}$$

Expoentes críticos e lei de escala

Figura 8: O expoente $B(\varepsilon)$ obtido do fitting de $I_{\rm rms}$ versus *n*, (b) o valor de saturação e (c) o ponto de transição em função de ε . (d) A superposição das curvas após as transformações $n \to n/\varepsilon^2$ e $I_{\rm rms} \to I_{\rm rms}/\varepsilon^{\gamma}$.

Agradecimentos

Sistemas Complexos e Dinâmica Não Linear 105 GROUP

Contato e mais informações

- rolim.sales@unesp.br
- github.com/mrolims
- 0000-0002-1121-63710

