Characterizing stickiness using recurrence time entropy

Matheus Rolim Sales

Michele Mugnaine, José D. Szezech Jr., Ricardo L. Viana, Iberê. L. Caldas, Norbert Marwan, Jürgen Kurths

São Paulo State University (UNESP)

V Workshop on Nonlinear Dynamics

matheusrolim95@gmail.com

May 24, 2024

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Hamiltonian systems

The time evolution of a Hamiltonian system is given by Hamilton's equations

$$\dot{q}_i = \frac{\partial \mathcal{H}(\mathbf{p}, \mathbf{q}, t)}{\partial p_i} = [q_i, \mathcal{H}],$$

$$\dot{p}_i = -\frac{\partial \mathcal{H}(\mathbf{p}, \mathbf{q}, t)}{\partial q_i} = [p_i, \mathcal{H}].$$
(1)

Any set (\mathbf{p}, \mathbf{q}) that satisfies Eq. (1) is said to be canonical and the 2*N* coordinates form a 2*N*-dimensional space, called phase space.

Hamiltonian systems have the special property of preserving volume in phase space (Liouville's theorem), *i.e.*, there are no attractors and repellors in the phase space of Hamiltonian systems

Integrable systems

A Hamiltonian system with N degrees of freedom is said to be integrable if there exist N independent constants of motion $f_i(\mathbf{p}, \mathbf{q})$ and if these N constants are in involution, $[f_i, f_j] = 0 \forall i, j$.

In this case, the dynamics of the system is confined to a N-dimensional torus.

Figure 1: Graphical representation of a two-dimensional torus.

Quasi-integrable systems

The phase space of a typical Hamiltonian system is neither integrable nor uniformly hyperbolic. The Hamiltonian of such a system is given by

$$\mathcal{H}(\mathbf{p}, \mathbf{q}, t) = \mathcal{H}_0(\mathbf{p}, \mathbf{q}) + \epsilon \mathcal{H}_1(\mathbf{p}, \mathbf{q}, t).$$
(2)

For small perturbations, the sufficiently irrational *tori* (KAM *tori*) survive the perturbation (KAM theorem), while the rational ones are destroyed.

For two-dimensional systems, the regular and chaotic regions are unconnected domains.

For stronger perturbations, the KAM *tori* are also destroyed and its remnants form a Cantor set, called *cantori*¹.

¹R. S. MacKay et al., *Phys. Rev. Lett.*, 1984, **52**, 697–700; R. S. MacKay et al., *Physica D: Nonlinear Phenomena*, 1984, **13**, 55–81; C. Efthymiopoulos et al., *Journal of Physics A: Mathematical and General*, 1997, **30**, 8167–8186.

Hamiltonian systems Quasi-integrable systems

Quasi-integrable systems

Figure 2: Representation of the phase space of a typical Hamiltonian system, where in gray is the chaotic sea and in white an stability island. Inside the island there are KAM *tori* and around the island are the remnants of a destroyed KAM *torus*, the *cantorus*.

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

The standard map²

Figure 3: Graphical representation of the kicked rotor.

$$\mathcal{H}(\theta, p, t) = \frac{p^2}{2} - k \cos \theta \sum_n \delta(t - n),$$

$$\theta_{n+1} = \theta_n + p_{n+1} \mod 2\pi,$$

$$p_{n+1} = p_n - k \sin \theta_n.$$

²B. V. Chirikov, *Physics Reports*, 1979, **52**, 263–379.

The standard map

Figure 4: Phase space of the standard map with 100 randomly chosen initial conditions for (a) k = 0.0, (b) k = 0.9, (c) k = 1.5, (d) k = 3.63, (e) k = 5.3 and (f) k = 9.0.

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Recurrence plots

The recurrence plot (RP) was first introduced by Eckmann in 1987³ and is a graphical representation of the recurrences of time series of dynamical systems.

Given $\mathbf{x}_i \in \mathbb{R}^d$ (i = 1, 2, ..., N), the recurrence matrix is defined as

$$R_{ij} = H\left(\epsilon - \|\mathbf{x}_i - \mathbf{x}_j\|\right), \ i, j = 1, 2, \dots, N,$$
(3)

where

- N is the time series length;
- $H(\cdot)$ is the Heaviside unit step function;
- ϵ is a small threshold;
- $\|\mathbf{x}_i \mathbf{x}_i\|$ is the distance in the *d*-dimensional phase space in terms of a suitable norm.

³J. P. Eckmann et al., Europhysics Letters (EPL), 1987, 4, 973–977.

Recurrence plots

Figure 5: (a) Quasiperiodic (blue), chaotic (black), and sticky (red) orbits, and (b)-(d) their respective recurrence matrix for the first 1000 iterations.

Recurrence quantification analysis (RQA)

Some of the most common RQA measures are⁴:

(i) recurrence rate;

(ii) determinism;

(iii) entropy.

The Shannon entropy of the lines is defined as

$$S = -\sum_{\ell=\ell_{\min}}^{\ell_{\max}} p(\ell) \ln p(\ell), \tag{4}$$

where $p(\ell) = P(\ell)/N_{\ell}$ is the relative distribution of line segments with length ℓ , and N_{ℓ} is the total number of line segments.

⁴N. Marwan et al., Physics Reports, 2007, **438**, 237–329; N. Marwan, The European Physical Journal Special Topics, 2008, **164**, 3–12.

Slater's theorem

The vertical distance between two recurrent points is related to the return times of the orbit⁵.

Quasiperiodic orbits can have at most three different return times (Slater's theorem⁶) \rightarrow { τ_1, τ_2, τ_3 }, where $\tau_3 = \tau_1 + \tau_2$.

It is possible to distinguish between chaotic and regular (periodic and quasiperiodic) dynamics by simply counting the number of unique return times, N_r , of an orbit⁷:

- $N_{\tau} = 1$: periodic;
- $N_{\tau} = 3$: quasiperiodic;
- $N_{\tau} > 3$: chaotic.

⁵Y. Zou et al., *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 2007, **17**, 043101; Y. Zou et al., *Phys. Rev. E*, 2007, **76**, 016210; Y. Zou, Ph.D. Thesis, Potsdam Univesity, 2007.

⁶N. B. Slater, *Mathematical Proceedings of the Cambridge Philosophical Society*, 1950, **46**, 525–534; N. B. Slater, Mathematical Proceedings of the Cambridge Philosophical Society, 1967, vol. 63, pp. 1115–1123.

⁷M. Mugnaine et al., *Phys. Rev. E*, 2022, **106**, 034203.

Slater's theorem

Figure 6: The number of unique recurrence times, N_{τ} , for the standard map with k = 1.5.

Recurrence time entropy

We use then the relative distribution of white vertical lines, $p_w(v)$, to define the Shannon entropy (4), and the recurrence time entropy (RTE) is defined as

$$RTE = -\sum_{\nu=\nu_{\min}}^{\nu_{\max}} p_{\nu}(\nu) \ln p_{\nu}(\nu).$$
(5)

We can then use the RTE to characterize the dynamics of an orbit:

- periodic orbit (one return time) \rightarrow RTE = 0;
- quasiperiodic orbit (three return times) \rightarrow small RTE;
- chaotic orbit (more than three return times) \rightarrow large RTE.

For sticky orbits we expect a smaller RTE than for chaotic orbits, but larger than it would be for a quasiperiodic orbit.

Recurrence time entropy

Figure 7: (a)-(c) The λ_{max} and (d)-(f) the RTE for the standard map with k = 1.5, for (a), (b), (d) and (e), and with $\theta_0 = 0.0$, for (c) and (f).

Correlation between λ_{max} and RTE

To quantify the correlation between two sets of data, x and y, we use the Person correlation coefficient, defined as

$$\rho_{xy} = \frac{\operatorname{cov}(x, y)}{\sigma_x \sigma_y}.$$

Table 1: Correlation between the λ_{max} and the RTE.

Figure	$\rho_{\lambda_{\max}, \text{RTE}}$
7(a) and 7(d)	0.93
7(b) and 7(e)	0.89
7(c) and 7(f)	0.94

Finite-time RTE

Since trapped chaotic orbits behave differently (*e.g.* smaller λ_{max} and RTE), the trappings can be better understood considering the finite-time RTE.

For infinite times, the chaotic orbit fills the entire chaotic component.

We follow the evolution of a single chaotic orbit for a long iteration time and calculate RTE along the evolution of the orbit in windows of size *n*: $\{\text{RTE}^{(i)}(n)\}_{i=1,2,\dots,M}, M = N/n.$

Figure 8: Schematic representation of the evolution of an orbit.

Figure 9: (a) The finite-time RTE distribution for a single chaotic orbit, with n = 200, $N = 10^{10}$ and k = 1.5, (b) the phase space points that generate the minor peaks in (a) and (c) is a magnification of one of the period-6 satellite islands of (b), indicated by the red dashed lines. The colors in (b) and (c) match the filling colors of (a). Inset: the time series of the FTRTE.

- The inset in Figure 10(a) shows abrupt changes in the value of RTE(200) which cause the distribution to split into more than one mode.
- The multi-modal distribution is due to the hierarchical structure of islands-around-islands.
- When the orbit is in the chaotic sea, RTE(200) is large, corresponding to the largest maximum.
- When the orbit is trapped, the RTE is low and the distribution exhibits smaller maxima for small values of RTE(200).

Cumulative distribution of trapping times

$$Q(\tau) = \sum_{t > \tau} P(t) = \frac{N_{\tau}}{N_t}$$

Figure 10: (a) The phase space points that generate the larger peak for high values of RTE in Figure 9(a) and (b) log-log plot of $Q(\tau)$ for each sticky region identified in Figure 9(a) with $N = 10^{11}$ and n = 200. Inset: Log-lin plot of $Q(\tau)$ of the phase space points shown in (a). The colors of the dots in (b) correspond to the colors of Figure 9.

Finite-time RTE

Figure 11: (a) Finite-time RTE and (b) finite-time Lyapunov exponent⁸ for $N = 10^{10}$, n = 200, and k = 1.5.

⁸J. D. Szezech et al., *Physics Letters A*, 2005, **335**, 394–401.

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Drift map

The problem of the $\mathbf{E} \times \mathbf{B}$ drift motion of passive particles can be described through the following two-dimensional, area-preserving mapping⁹

$$\begin{split} I_{n+1} &= I_n + \epsilon \sin(2\pi\theta_n), \\ \theta_{n+1} &= \theta_n + \alpha v_{\parallel}(I_{n+1}) \left[\frac{M}{q(I_{n+1})} - L \right] + \gamma \frac{E_r(I_{n+1})}{\sqrt{I_{n+1}}}, \end{split}$$
(6)

where (I, θ) are the action-angle variables, ϵ is the perturbation strength, and the remaining parameters are taken accordingly to the TCABR tokamak, at the Physics Institute of São Paulo University¹⁰.

The safety factor, q(I), the electric field, $E_r(I)$, and the toroidal velocity, $v_{\parallel}(I)$, are given by the following expressions, compatible with profiles measured on the TCABR tokamak:

$$\begin{aligned} q(I) &= q_1 + q_2 I^2 + q_3 I^3, \\ E_r(I) &= e_1 I + e_2 \sqrt{I} + e_3, \\ v_{\parallel}(I) &= v_1 + v_2 \tanh\left(v_3 I + v_4\right). \end{aligned} \tag{7}$$

⁹W. Horton et al., *Physics of Plasmas*, 1998, **5**, 3910–3917; L. C. Souza et al., *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 2023, **33**, 083132; L. C. Souza et al., *Phys. Rev. E*, 2024, **109**, 015202.

¹⁰I. C. Nascimento et al., Nuclear Fusion, 2005, 45, 796.

Recurrence plots

Figure 12: (a) Quasiperiodic (blue), chaotic (black), and sticky (red) orbits, and (b)-(d) their respective recurrence matrix for the first 1000 iterations with $\epsilon = 0.08$.

Finite-time RTE

Figure 13: The finite-time RTE distribution for a single chaotic orbit for the drift map, with n = 200, $N = 10^{10}$ and $\epsilon = 0.08$, the phase space points that generate the minor peaks, and the cumulative distribution of trapping times for each sticky region.

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Conclusions and perspectives

- The RTE is positively correlated to the largest Lyapunov exponent, with a high correlation coefficient.
- It is possible to distinguish between chaotic and regular solutions using the RTE.
- The peak for small values of λ_{max} in the finite-time Lyapunov exponent distribution is, in fact, composed of several minor peaks, as suggested by Harle and Feudal¹¹.
- Each peak in the finite-time RTE distribution corresponds to a different hierarchical level in the islands-around-islands structure embedded in the chaotic sea.
- The cumulative distribution of trapping times of each hierarchical level displays a power-law tail, whereas we observe an exponential decay when the orbit lies in the chaotic sea.
- Can the RTE characterize the parameter space of dissipative systems?
- Can the RTE characterize the dynamics of higher dimensional systems?
- Can we define an upper bound for the RTE?

¹¹M. Harle and U. Feudel, Chaos, Solitons & Fractals, 2007, 31, 130-137.

Hamiltonian systems

Integrable systems

Quasi-integrable systems

The standard map

Recurrence plots and recurrence time entropy

Stickiness in toroidal plasmas

Conclusions and perspectives

Acknowledgements

Universidade Estadual de Ponta Grossa

Sistemas Complexos e Dinâmica Não Linear

