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Hamiltonian systems

Hamiltonian systems

The time evolution of a Hamiltonian system is given by Hamilton’s equations

q̇i =
)(p,q, t)

)pi
= [qi,],

ṗi = −
)(p,q, t)

)qi
= [pi,].

(1)

Any set (p,q) that satisfies Eq. (1) is said to be canonical and the 2N coordinates form a 2N–dimensional
space, called phase space.

Hamiltonian systems have the special property of preserving volume in phase space (Liouville’s
theorem), i.e., there are no attractors and repellors in the phase space of Hamiltonian systems
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Hamiltonian systems
Integrable systems

Integrable systems

A Hamiltonian system with N degrees of freedom is said to be integrable if there exist N inde-
pendent constants of motion fi(p,q) and if these N constants are in involution, [fi, fj] = 0 ∀ i, j.

In this case, the dynamics of the system is confined to a N-dimensional torus.

C1

C2

Figure 1: Graphical representation of a two-dimensional torus.
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Quasi-integrable systems

Quasi-integrable systems

The phase space of a typical Hamiltonian system is neither integrable nor uniformly hyperbolic.

The Hamiltonian of such a system is given by

(p,q, t) = 0(p,q) + �1(p,q, t). (2)

For small perturbations, the sufficiently irrational tori (KAM tori) survive the perturbation (KAM
theorem), while the rational ones are destroyed.

For two-dimensional systems, the regular and chaotic regions are unconnected domains.

For stronger perturbations, the KAM tori are also destroyed and its remnants form a Cantor set,
called cantori1.

1R. S. MacKay et al., Phys. Rev. Lett., 1984, 52, 697–700; R. S. Mackay et al., Physica D: Nonlinear Phenomena, 1984, 13,
55–81; C. Efthymiopoulos et al., Journal of Physics A: Mathematical and General, 1997, 30, 8167–8186.
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Quasi-integrable systems

Quasi-integrable systems

KAM

tori

Chaotic sea

Holes in the

cantorus

Figure 2: Representation of the phase space of a typical Hamiltonian system, where in gray is the chaotic sea
and in white an stability island. Inside the island there are KAM tori and around the island are the remnants
of a destroyed KAM torus, the cantorus.
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The standard map

The standard map2

ℓ

.

θ

ω

Figure 3: Graphical representation of the kicked
rotor.

(�, p, t) =
p2

2
− k cos �

∑

n
�(t − n),

�n+1 = �n + pn+1 mod 2�,

pn+1 = pn − k sin �n.

2B. V. Chirikov, Physics Reports, 1979, 52, 263–379.
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The standard map

The standard map

Figure 4: Phase space of the standard map with 100 randomly chosen initial conditions for (a) k = 0.0, (b)
k = 0.9, (c) k = 1.5, (d) k = 3.63, (e) k = 5.3 and (f) k = 9.0.
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Recurrence plots and recurrence time entropy

Recurrence plots

The recurrence plot (RP) was first introduced by Eckmann in 19873 and is a graphical represen-
tation of the recurrences of time series of dynamical systems.

Given xi ∈ ℝd (i = 1, 2,… ,N), the recurrence matrix is defined as

Rij = H
(

� − ‖xi − xj‖
)

, i, j = 1, 2,… ,N, (3)

where

∙ N is the time series length;

∙ H(⋅) is the Heaviside unit step function;

∙ � is a small threshold;

∙
‖xi − xj‖ is the distance in the d-dimensional phase space in terms of a suitable norm.

3J. P. Eckmann et al., Europhysics Letters (EPL), 1987, 4, 973–977.
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Recurrence plots and recurrence time entropy

Recurrence plots

Figure 5: (a) Quasiperiodic (blue), chaotic (black), and sticky (red) orbits, and (b)-(d) their respective
recurrence matrix for the first 1000 iterations.
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Recurrence plots and recurrence time entropy

Recurrence quantification analysis (RQA)

Some of the most common RQA measures are4:

(i) recurrence rate;

(ii) determinism;

(iii) entropy.

The Shannon entropy of the lines is defined as

S = −
lmax
∑

l=lmin

p(l) ln p(l), (4)

where p(l) = P(l)∕Nl is the relative distribution of line segments with length l, and Nl is the
total number of line segments.

4N. Marwan et al., Physics Reports, 2007, 438, 237–329; N. Marwan, The European Physical Journal Special Topics, 2008,
164, 3–12.
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Recurrence plots and recurrence time entropy

Slater’s theorem

The vertical distance between two recurrent points is related to the return times of the orbit5.

Quasiperiodic orbits can have at most three different return times (Slater’s theorem6)→
{

�1, �2, �3
}

,
where �3 = �1 + �2.

It is possible to distinguish between chaotic and regular (periodic and quasiperiodic) dynamics
by simply counting the number of unique return times, N� , of an orbit7:

∙ N� = 1: periodic;

∙ N� = 3: quasiperiodic;

∙ N� > 3: chaotic.

5Y. Zou et al., Chaos: An Interdisciplinary Journal of Nonlinear Science, 2007, 17, 043101; Y. Zou et al., Phys. Rev. E,
2007, 76, 016210; Y. Zou, Ph.D. Thesis, Potsdam Univesity, 2007.

6N. B. Slater, Mathematical Proceedings of the Cambridge Philosophical Society, 1950, 46, 525–534; N. B. Slater,
Mathematical Proceedings of the Cambridge Philosophical Society, 1967, vol. 63, pp. 1115–1123.

7M. Mugnaine et al., Phys. Rev. E, 2022, 106, 034203.
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Slater’s theorem

Figure 6: The number of unique recurrence times, � , for the standard map with k = 1.5.
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Recurrence plots and recurrence time entropy

Recurrence time entropy

We use then the relative distribution of white vertical lines, pw(v), to define the Shannon entropy
(4), and the recurrence time entropy (RTE) is defined as

RTE = −
vmax
∑

v=vmin

pw(v) ln pw(v). (5)

We can then use the RTE to characterize the dynamics of an orbit:

∙ periodic orbit (one return time) → RTE = 0;

∙ quasiperiodic orbit (three return times) → small RTE;

∙ chaotic orbit (more than three return times) → large RTE.

For sticky orbits we expect a smaller RTE than for chaotic orbits, but larger than it would be for
a quasiperiodic orbit.
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Recurrence time entropy

θ θ

Figure 7: (a)-(c) The �max and (d)-(f) the RTE for the standard map with k = 1.5, for (a), (b), (d) and (e), and
with �0 = 0.0, for (c) and (f).
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Recurrence plots and recurrence time entropy

Correlation between �max and RTE

To quantify the correlation between two sets of
data, x and y, we use the Person correlation co-
efficient, defined as

�xy =
cov(x, y)
�x�y

.

Table 1: Correlation between the �max and the RTE.

Figure ��max ,RTE

7(a) and 7(d) 0.93
7(b) and 7(e) 0.89
7(c) and 7(f) 0.94
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Recurrence plots and recurrence time entropy

Finite-time RTE

Since trapped chaotic orbits behave differently (e.g. smaller �max and RTE), the trappings can be
better understood considering the finite-time RTE.

For infinite times, the chaotic orbit fills the entire chaotic component.

We follow the evolution of a single chaotic orbit for a long iteration time and calculate RTE along
the evolution of the orbit in windows of size n:

{

RTE(i)(n)
}

i=1,2,…,M , M = N∕n.

.

.

.

t =
 0

t =
 n

t = 2n
.

.

t = 3n

t = 4n .

.t = 6n

t = 5n

Figure 8: Schematic representation of the evolution of an orbit.
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Finite-time RTE

Figure 9: (a) The finite-time RTE distribution for a single chaotic orbit, with n = 200, N = 1010 and k = 1.5,
(b) the phase space points that generate the minor peaks in (a) and (c) is a magnification of one of the period-6
satellite islands of (b), indicated by the red dashed lines. The colors in (b) and (c) match the filling colors of
(a). Inset: the time series of the FTRTE.

∙ The inset in Figure 10(a) shows abrupt changes in the value of RTE(200) which cause the
distribution to split into more than one mode.

∙ The multi-modal distribution is due to the hierarchical structure of islands-around-islands.
∙ When the orbit is in the chaotic sea, RTE(200) is large, corresponding to the largest

maximum.
∙ When the orbit is trapped, the RTE is low and the distribution exhibits smaller maxima for

small values of RTE(200).
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Recurrence plots and recurrence time entropy

Cumulative distribution of trapping times

Q(�) =
∑

t>�
P(t) =

N�
Nt

.

Figure 10: (a) The phase space points that generate the larger peak for high values of RTE in Figure 9(a) and
(b) log-log plot of Q(�) for each sticky region identified in Figure 9(a) with N = 1011 and n = 200. Inset:
Log-lin plot of Q(�) of the phase space points shown in (a). The colors of the dots in (b) correspond to the
colors of Figure 9.
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Finite-time RTE
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Figure 11: (a) Finite-time RTE and (b) finite-time Lyapunov exponent8 for N = 1010, n = 200, and k = 1.5.

8J. D. Szezech et al., Physics Letters A, 2005, 335, 394–401.
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Stickiness in toroidal plasmas

Drift map
The problem of the E×B drift motion of passive particles can be described through the following
two-dimensional, area-preserving mapping9

In+1 = In + � sin
(

2��n
)

,

�n+1 = �n + �v∥(In+1)
[

M
q(In+1)

− L
]

+ 

Er(In+1)
√

In+1
,

(6)

where (I, �) are the action-angle variables, � is the perturbation strength, and the remaining pa-
rameters are taken accordingly to the TCABR tokamak, at the Physics Institute of São Paulo
University10.

The safety factor, q(I), the electric field, Er(I), and the toroidal velocity, v∥(I), are given by the
following expressions, compatible with profiles measured on the TCABR tokamak:

q(I) = q1 + q2I2 + q3I3,

Er(I) = e1I + e2
√

I + e3,

v∥(I) = v1 + v2 tanh
(

v3I + v4
)

.

(7)

9W. Horton et al., Physics of Plasmas, 1998, 5, 3910–3917; L. C. Souza et al., Chaos: An Interdisciplinary Journal of
Nonlinear Science, 2023, 33, 083132; L. C. Souza et al., Phys. Rev. E, 2024, 109, 015202.

10I. C. Nascimento et al., Nuclear Fusion, 2005, 45, 796.
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Recurrence plots

Figure 12: (a) Quasiperiodic (blue), chaotic (black), and sticky (red) orbits, and (b)-(d) their respective
recurrence matrix for the first 1000 iterations with � = 0.08.

26 / 31



Stickiness in toroidal plasmas

Finite-time RTE
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Figure 13: The finite-time RTE distribution for a single chaotic orbit for the drift map, with n = 200,
N = 1010 and � = 0.08, the phase space points that generate the minor peaks, and the cumulative distribution
of trapping times for each sticky region.
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Conclusions and perspectives

Conclusions and perspectives

∙ The RTE is positively correlated to the largest Lyapunov exponent, with a high correlation
coefficient.

∙ It is possible to distinguish between chaotic and regular solutions using the RTE.

∙ The peak for small values of �max in the finite-time Lyapunov exponent distribution is, in
fact, composed of several minor peaks, as suggested by Harle and Feudal11.

∙ Each peak in the finite-time RTE distribution corresponds to a different hierarchical level
in the islands-around-islands structure embedded in the chaotic sea.

∙ The cumulative distribution of trapping times of each hierarchical level displays a
power-law tail, whereas we observe an exponential decay when the orbit lies in the chaotic
sea.

∙ Can the RTE characterize the parameter space of dissipative systems?

∙ Can the RTE characterize the dynamics of higher dimensional systems?

∙ Can we define an upper bound for the RTE?

11M. Harle and U. Feudel, Chaos, Solitons & Fractals, 2007, 31, 130–137.
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