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Abstract
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying 
the dynamics of a standard model, i.e., with integer derivatives. We study the dynamical behavior by means of the bifurca‑
tion diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurrence rate (RR), the 
determinism (DET), and the recurrence time entropy (RTE). We find a high correlation coefficient between the Lyapunov 
exponents and RTE. Our simulations suggest that the tumor growth parameter ( �1 ) is associated with a chaotic regime. Our 
results suggest a high correlation between the largest Lyapunov exponents and RTE. After understanding the dynamics of 
the model in the standard formulation, we extend our results by considering fractional operators. We fix the parameters in 
the chaotic regime and investigate the effects of the fractional order. We demonstrate how fractional dynamics can be prop‑
erly characterized using RQA measures, which offer the advantage of not requiring knowledge of the fractional Jacobian 
matrix. We find that the chaotic motion is suppressed as � decreases, and the system becomes periodic for � ⪅ 0.9966 . We 
observe limit cycles for � ∈ (0.9966, 0.899) and fixed points for 𝛼 < 0.899 . The fixed point is determined analytically for 
the considered parameters. Finally, we discover that these dynamics are separated by an exponential relationship between � 
and �1 . Also, the transition depends on a supper transient which obeys the same relationship.

Keywords  Cancer model · Fractional calculus · Recurrence analysis

1  Introduction

Cancer is a set of diseases that arises from the abnormal 
growth and uncontrolled division of body cells. It can spread 
to the body’s cells, causing many deaths [1]. Each year the 
American Cancer Society estimates the number of new can‑
cer cases. For 2020 there was an estimated number of 19.3 
million new cancer cases and almost 10.0 million deaths 
from cancer [2]. Only in the United States of America were 
projected 1,918,030 new cancer cases and 609,360 cancer 
deaths for 2022 [3]. In this way, cancer is a crucial public 
health problem worldwide [4] that requires many efforts to 
understand the mechanism behind the illness and improve 
the treatment methods [5–7]. There are several methods to 
study the dynamics of cancer cell proliferation and one of 
the most successful method is through mathematical models.

Mathematical model is a powerful tool for understanding 
cancer dynamics [8, 9] and simulate treatment measures, 
such as effects of drug resistance [10, 11], immunotherapy 
[12], chemotherapy [13, 14], radiotherapy [15], biochemo‑
therapy [16] and predict fluctuations associated with the 
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growth rate of cancer cells [17]. A fundamental ques‑
tion that arises is how to understand the dynamics among 
healthy cells, the immune system and the tumor cells. In 
light of this question, several models have been proposed 
and studied [18–24].

Dehingia et al. [25] studied the effect of time delay in 
tumor-immune interaction and stimulation process. They 
obtained conditions for the existence of equilibrium points 
and Hopf bifurcation. Also, they derived conditions for 
periodic solutions. Díaz-Marín et al. [26] proposed a model 
to describe cell population dynamics in a tumor with peri‑
odic radiation as treatment. As global attractors, they found 
almost periodic solutions or the vanishing equilibrium. 
López et al. [27] formulated a model for tumor growth in the 
presence of cytotoxic chemotherapeutic agents. Their model 
allows an investigation of the Norton-Simon hypothesis in 
the context of dose-dense chemotherapy. In another work, 
López et al. [28] validated a model by means of experimen‑
tal results. In this model, they considered tumor growth, 
including tumor-healthy cell interactions, immune response, 
and chemotherapy. Most of these models deal with three 
or more dimensional systems, where chaotic behavior is a 
possibility [29].

A three-dimensional cancer model with chaotic dynam‑
ics was proposed by Itik and Banks [30]. In their model, 
they considered the interactions of tumor cells with healthy 
host cells and immune systems. Through the calculation of 
Lyapunov exponents, they showed the existence of chaotic 
attractors for some parameters. Letellier et al. [31], made a 
topological and observability analysis of this model. They 
also investigated the equilibrium points and the bifurca‑
tion diagrams. Khajanchi et al. [32] studied a similar model 
with time delay. They analyzed the existence and stability 
of biologically feasible points and the emergence of Hopf 
bifurcations. Chaos in the 3-cell cancer model was also 
studied by Abernethy and Gooding [33], Gallas et al. [34], 
Khajanchi [35] and others [36–39].

Although the literature about the model proposed by Itik 
and Banks [30] is extensive, the works are restricted to inte‑
ger-order differential equations. However, this formulation 
does not incorporate non-local effects. To do that, it is nec‑
essary to consider fractional differential equations [40]. In 
general, non-local operators are more efficient in describing 
some situations since they capture non-localities and have 
memory effects [41]. Fractional operators have been used to 
model many real problems, such as photo acoustic [42, 43], 
viscoelastic properties [44], Quantum Mechanics [45–47], 
Epidemiology [48, 49], Ecology [50, 51], Duffing oscilla‑
tor [52] and many others [53–55].

The dynamical behavior of the cancer model proposed 
by Itik and Banks [30] was studied in light of fractional 
operators in Ref. [56]. It was considered three different 
fractional derivatives formulations: the power-law [57] 

(singular kernel), the exponential [58], and the Mittag-
Leffler [59]. The results show that the dynamics is 
changed as a consequence of the extension to fractional 
differential operators. Ghanbari [60] also explored the 
same model and investigated the influence of power-law, 
exponential decay-law, and Mittag-Leffler in the fractal-
fractional approach. These researchers obtained condi‑
tions for the existence and uniqueness of the solutions 
and expanded a numerical method to study the dynamical 
behavior. The results showed that the dynamics change 
from chaotic to a limit cycle depending on the factional 
order. Naik et al. [61], considering an extension given 
by the Caputo derivative, analyzed the stability of the 
model. In a numerical scheme, they reported that the 
system goes to a limit cycle in a chaotic regime for the 
standard model. Xuan et al. [62], using the Caputo fractal-
fractional derivative in the cancer model, demonstrated 
that hidden attractors emerge under fractional operators. 
To study the system’s complexity, they studied bifurca‑
tion diagrams and stability. Their findings also showed 
that the system converges to a limit cycle attractor when 
the fractional order is decreased. These works extend the 
model of Itik and Banks [30]. Extensions of other cancer 
models can be found in Refs. [63–72].

In this work, we analyze the influence of fractional 
operators in a cancer model [30]. As a definition of the 
fractional operator, we follow the Caputo scheme [41], 
with an order equal to � . We consider the parameters in 
which the trajectories are chaotic [31]. As a novelty, we 
characterize the model using recurrence quantification, 
such as recurrence rate (RR), recurrence time entropy 
(RTE), and determinism (DET). Furthermore, we localize 
the � value in which the system transits from chaos to limit 
cycle utilizing RTE. Also, considering the mean square 
deviation of the time series, we construct the plane param‑
eters composed of �1 × � , where �1 is the tumor growth. 
Our results suggest an exponential relation between � and 
tumor growth rate �1 in which the dynamics transit from 
the limit cycle to a fixed point. This transition depends on 
a supper transient time that follows the same relationship 
between �1 and �.

Our work is organized as follows. In Sect. 2, we revisit 
the integer-order model analyzing the fixed points and their 
stabilities. Section 3 discusses the fractional influences in 
the cancer model. Our conclusions are drawn in Sect. 4.

2 � Standard Model

We consider a cancer model that describes the interactions 
among host cells (H), effector immune cells (E) and tumor 
cells (T), governed by the following equations:
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Equation (1) describes the growth of the host cells by a logis‑
tic function with a rate equal to �1 and biotic capacity equal 
to �1 . The host cells are killed by tumor cells. This term is 
represented by the interaction −�13TH , where �13 is the host 
cell killing rate by tumor cells. Equation (2) gives the rate at 
which immune cells appear. These cells are the tumor anti‑
gens whose growth depends on the quantity of T, the growth 
rate of effector immune cells ( �2 ), and a positive constant �2 . 
The tumor cell not only contributes to the growth of immune 
cells but also to its death. In the term −�23TE , �23 is the rate 
at which tumor cells inhibit the immune cells. In addition, 
the E cells die according to �2 . The last equation, Eq. (3), 
gives the dynamics of the tumor cells. Similarly, with the H 
cells, the tumor growth is given by a logistic function with 
a growth rate equal to �3 and biotic capacity equal to �3 . The 
T cells are killed by H cells at a rate equal to �31 and by the 
E cells with a rate equal to �32.

Considering the transformation (H,E, T) → (x, y, z) [30], 
the normalized equations are

A schematic representation of the model is displayed in 
Fig. 1. The red, green, and blue circles represent the x, y, 
and z cells, respectively. The arrows indicate the interac‑
tions. If the interaction is constructive (growth cells), we 
denote with a signal + . If the interaction is destructive (kill 
cells), we denote it by a signal −. The x cells growth with a 
rate �1 , which is indicated by +�1 in Fig. 1. The x cells are 
killed by the tumor cells at a rate equal to �13 . The tumor 
cells grow according to a rate �3 and are killed by x cells at a 
rate �31 and by y at a rate equal to �32 . The y cells grow when 
interacting with tumor cells by a rate �2 and are killed by z 

(1)
dH

dt
= �1H

(
1 −

H

�1

)
− �13TH,

(2)
dE

dt
= �2

TE

T + �2

− �23TE − �2E,

(3)
dT

dt
= �3T

(
1 −

T

�3

)
− �31TH − �32TE.

(4)
dx

dt
= �1x(1 − x) − �13xz,

(5)
dy

dt
=

�2yz

1 + z
− �23yz − �2y,

(6)
dz

dt
= z(1 − z) − xz − �32yz.

cells according to a rate equal to �23 . Also, the y cells have 
a natural death �2 . The immune cells do not interact with 
the host cells. In this way, the tumor cells are the general‑
ist competitors and the other two are specialist competitors 
[31]. In this type of interaction, there is no particular prey.

The fixed point solutions of this model are found by 
solving:

admitting seven solutions, that are Fi ≡ (xi, yi, zi) , where 
i = 1, ..., 7 . Solving Eqs. (7), (8), and (9), we obtain

(7)0 = �1x(1 − x) − �13xz,

(8)0 =
�2yz

1 + z
− �23yz − �2y,

(9)0 = z(1 − z) − xz − �32yz,

(10)F1 = (0, 0, 0), F2 = (0, 0, 1), F3 = (1, 0, 0)

(11)

F4 =

(
0,

√(
�23 + �2 − �2

)
2 − 4�23�2 + 3�23 + �2 − �2

2�23�32
,

−

√(
�23 + �2 − �2

)
2 − 4�23�2 + �23 + �2 − �2

2�23

)

a

Fig. 1   Schematic representation of the cancer model. x, y and z repre‑
sent the host, immune, and tumor cells. �1 is the growth rate of x, �13 
is the death rate of x due to z, �31 is the death rate of z due to x, �3 is 
the growth rate of z, �32 is the death rate of z due to y, �2 is the growth 
rate of y due to z, �32 is the death rate of y due to z and �2 is the natu‑
ral death of y 
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To simplify the analysis of the fixed points, the parameters are 
equal to �13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 and �32 = 2.5 . 
�1 is maintained as our control parameter in the entire work. For  
these values, the fixed points are F1 = (0, 0, 0) , F2 = (0, 0, 1) , 
F3 = (1, 0, 0) , F4 = (0, 0.3469, 0.1325) , F5 =

1

�1

(�1 − 0.1987,

0.0530(1.5 − �1), 0.1325�1) , F6 = (0,−7.1470, 18.8675) and 
F7 =

1

�1

(�1 − 28.3012, 7.5470(1.5 − �1), 18.8675�1) . F1 is a 
trivial solution and exhibits a population without cells. The eigen‑
values associated with the Jacobian calculated in F1 are 
(1,−0.5, �1) . The signs depend on �1 , which is always positive. 
Then, we find two unstable and one stable point, which character‑
ize a saddle. F2 is the point that represents a situation where the 
cancer cells occupy the whole host. The Jacobian eigenvalues in 
F2 are (1.55, �1 − 1.5,−1) . Considering �1 = 0.6 , we obtain 
(1.55,−0.9,−1) , which characterizes a saddle point. F3 corre‑
sponds to the cancer-free solution. The Jacobian eigenvalues 
calculated at this point are 

(
0,−0.5,−�1

)
 , as �1 ≥ 0 , we have two 

negative eigenvalues and one equal zero. Thus, this point is a 
saddle. In F4 , all coordinates are positives; all solutions are in the 
positive octant. The Jacobian eigenvalues in this point are 
(�1 − 0.198754, −0.0662515 + 0.6131239 i,  −0.0662515−
0.6131239 i) . The F5 point has a biological significance for 
�1 ∈ [0.1987, 1.5] .  Selecting �1 = 0.6 ,  we obtain 
(0.6688, 0.0795, 0.1325) which is an unstable point. The F6 point 
has a negative term associated with the effector immune cells. 
Therefore, this solution does not have biological relevance. F7 

(12)

F5 =

( �13

(√
−2�2

(
�23 + �2

)
+
(
�23 − �2

)
2 + �

2

2
+ �23 + �2 − �2

)

2�23�1
+ 1,

−

(
�13 − �1

)(√(
�23 + �2 − �2

)
2 − 4�23�2 + �23 + �2 − �2

)

2�23�32�1
,

−

√(
�23 + �2 − �2

)
2 − 4�23�2 + �23 + �2 − �2

2�23

)
,

(13)

F6 =

(
0,−

√(
�23 + �2 − �2

)
2 − 4�23�2 − 3�23 − �2 + �2

2�23�32
,

√(
�23 + �2 − �2

)
2 − 4�23�2 − �23 − �2 + �2

2�23

)
,

(14)

F7 =

( �13

(
−

√
−2�2

(
�23 + �2

)
+
(
�23 − �2

)
2 + �

2

2
+ �23 + �2 − �2

)

2�23�1
+ 1,

(
�13 − �1

)(√(
�23 + �2 − �2

)
2 − 4�23�2 − �23 − �2 + �2

)

2�23�32�1
,

√(
�23 + �2 − �2

)
2 − 4�23�2 − �23 − �2 + �2

2�23

)
.

has a biological relevance when �1 ≥ 28.3012 . However, con‑
sidering this range, the second element of F7 is negative. This 
way, the point F7 is irrelevant.

The numerical solutions for Eqs. (4) (blue line), (5) 
(red line) and (6) (green line) are displayed in Fig. 2(a) 
for �1 = 0.4 , �13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �32 = 2.5 and 
�2 = 0.5 . For these parameters, the solution is a limit cycle. 
The solutions show that the number of host cells decreases 
while the immune and cancer increase. After that, the solu‑
tion reaches an oscillatory behavior between the three 
population cells. For different �1 values, it is possible to 
observe chaotic solutions. As shown in previous works 
[31], the dynamical system has a chaotic attractor for 
�1 = 0.6 , as exhibited in Fig. 2(b). Figure 2(c) shows the 
2-dimensional projection together with the fixed points.

In order to distinguish periodic dynamics from chaotic 
ones, we use the recurrence plots (RPs), namely, recur‑
rence quantification analysis (RQA), which remain valid 
under fractional operators. The RPs, introduced by Eck‑
mann et al. [73], provide a visual representation of recur‑
rences of the states of a system in a d-dimensional phase 
space within a small deviation � , as well as a quantitative 
analysis of the dynamical behavior exhibited by the sys‑
tem. For this purpose, given a trajectory x⃗(t) ∈ ℝd , we 
define a recurrence matrix R as

where i, j = 1, 2,… ,N , N is the length of the time series, H 
is the Heaviside unit step function, � is a small threshold and 
‖x⃗(ti) − x⃗(tj)‖ is the spatial distance between two states, x⃗(ti) 
and x⃗(tj) , in phase space in terms of a suitable norm.

The recurrence matrix is symmetric and binary with the 
elements 0 representing the non-recurrent states and the 
elements 1 representing the recurrent ones. Two states are 
recurrent when the state at t = ti is close (up to a distance 

(15)Rij = H(𝜖 − ‖x⃗(ti) − x⃗(tj)‖),

Fig. 2   a Time series for x, y and z in blue, red and green lines, 
respectively. In panel a, we consider �1 = 0.4 . b Phase space in 
3-dimensional space and projection in the plane y − z in the panel c 
for �1 = 0.6 . We consider �13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 , 
�32 = 2.5 , x0 = 0.80 , y0 = 0.15 , and z0 = 0.05
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� ) to a different state at t = tj . For the threshold � , we 
choose it to be � = 0.01 . For a discussion on the choice of 
� , see Appendix.

Several measures based on the RPs have been proposed 
[74–78]. The most simple of them is the recurrence rate, 
RR, defined as

which is a measure of the density of recurrent points. There 
are also measures based on the diagonal lines formed in an 
RP, such as determinism (or predictability)

where P(�) is the total number of diagonal lines with length 
� and minimal length �min . Determinism is also a density 
as the recurrence rate. It is the density of recurrent points 
that lie on a diagonal line and refers to the degree to which 
the dynamics of a system is predictable and repeatable over 
time. Systems with stochastic or chaotic behaviors cause no 
or very short diagonal lines, whereas deterministic behavior 
exhibits longer diagonal lines. Therefore, the determinism is 
expected to be small in the first case and large in the second 
case. There are also measures based on the vertical lines of 
length v, such as the laminarity (LAM) and the trapping time 
(TT), for example. For a detailed discussion about these and 
other measures, see Refs. [74–78] and references therein.

Entropy-based measures of RPs have been employed to 
characterize the dynamical behavior of nonlinear systems 
[79–84, 89]. The entropy of the distribution of recurrence 
times (recurrence time entropy) has been utilized as a tool 
for the detection of chaotic orbits. The vertical distances 
between the diagonal lines, i.e., the gaps between them, 
are an estimate of the recurrence times of the trajectory 
[85–88]. The Shannon entropy of the distribution of white 
vertical lines (the estimate of the recurrence times) is 
defined as [79, 84, 89]

where vmin ( vmax ) is the length of the shortest (longest) white 
vertical line. pw(v) = Pw(v)∕Nw and Pw(v) are the relative 
distribution and the total number of white vertical lines of 
length v, respectively, and Nw is the total number of them. 
Due to the finite size of a RP, the distribution of white verti‑
cal lines might be biased by the white border lines, which 
are cut short by the border of the RP, thus affecting the RQA 
measures, such as the RTE [90]. In order to avoid these 

(16)RR =
1

N2

N∑

i,j=1

Rij,

(17)DET =

∑N

�=�min
�P(�)

∑N

�=1
�P(�)

,

(18)RTE = −

v=vmax∑

v=vmin

pw(v) ln pw(v),

border effects, it is necessary to exclude the distribution of 
the lines that begin and end at the border of the RP.

To investigate the dynamic behavior of the cancer 
model, we consider �1 as the control parameter and com‑
pute the bifurcation diagram by recording the local max‑
ima, xmax (black dots) and local minima, xmin (red dots), 
of x(t), as shown in Fig. 3(a). For 𝜌1 < 0.5 , the dynam‑
ics is periodic and becomes chaotic via period doubling. 
The bifurcation diagram exhibits some periodic windows. 
We consider the Lyapunov exponents ( � ) as a classical 
method to compute chaotic solutions. Figure 3(b) shows 
the largest, �1 and second largest, �2 , Lyapunov expo‑
nents by the blue and red lines, respectively. The chaotic 
regimes are marked by at least one Lyapunov exponent 
greater than zero. In the periodic windows, we observe 
�1 ≈ 0 and 𝜆2 < 0 . On the other hand, when the dynamics 
is chaotic, 𝜆1 > 0 . We also calculate the RQA measures 
RR, DET, and RTE in panels (c), (d), and (e), respectively. 
To construct the recurrence matrix, we consider the time 
series of xmax , {x

(i)
max}i=1,2,…,N . We verify that periodic solu‑

tions exhibit large values of RR and DET, with DET → 1 , 
indicating that all recurrent points lie on a diagonal line, 
whereas the RTE is close to zero in these cases. RR and 
DET show smaller values during the chaotic windows, 
while the RTE is larger. Therefore, there is a correlation 
between �1 and these RQAs measures. To quantify this 
correlation, we use the Pearson correlation coefficient,

(19)�x,y =
cov(x, y)

�x�y

,

Fig. 3   a Bifurcation diagram of xmax (black points) and xmin (red 
points), b largest (blue line) and second largest Lyapunov (red line) 
exponents, c recurrence rate, RR, d determinism, DET, and e recur‑
rence time entropy, RTE, as a function of �1 . We consider �13 = 1.5 , 
�2 = 4.5 , �23 = 0.2 , �2 = 0.5 , �32 = 2.5 , and � = 0.01



	 Brazilian Journal of Physics (2023) 53:145

1 3

145  Page 6 of 11

where cov(x, y) is the covariance between the two data series 
and � their respective standard deviation. We obtain for the 
correlation coefficient between �1 and RR, DET, and RTE, 
the values ��1,RR = −0.54 , ��1,DET = −0.41 , ��1,RTE = 0.88 , 
respectively. Thus, the RTE is a great alternative for the 
characterization of the dynamics of this system.

3 � Fractional Approach

The fractional extension of the model described by 
Eqs. (4), (5) and (6) is obtained by making the following 
substitution: Df → D�f  , where D is the integer differential 
operator, i.e., df/dt and 0D�

t
f  is the fractional differential 

operator and is defined, in the Caputo sense, by

where Γ(⋅) is the gamma function and 0 < 𝛼 < 1 [41]. There‑
fore, the extended cancer model is given by

The time series for � = 0.995 (blue line), � = 0.98 (red 
line) and � = 0.95 (green line) are displayed in Fig. 4. The 
numerical integration is made by the algorithm described in 

(20)0D
𝛼

t
f ≡ 1

Γ(1 − 𝛼) �
t

0

dt�
1

(t − t�)𝛼
𝜕

𝜕t
f (r⃗, t),

(21)0D
�

t
x = �1x(1 − x) − �13xz,

(22)0D
�

t
y =

�2yz

1 + z
− �23yz − �2y,

(23)0D
�

t
z = z(1 − z) − xz − �32yz.

Ref. [95]. The black dotted lines are for the standard case, 
as exhibited in Fig. 2. These results show that the fractional 
order attenuates the oscillations until a fixed point as � 
decreases. For instance, for � = 0.95 , the fixed point is equal 
to (x, y, z) = (0.5032, 0.1456, 0.1325) , which corresponds to 
F5 calculated for �1 = 0.4.

The oscillatory behavior is attenuated in the chaotic 
regime for �1 = 0.6 and the dynamics is transited to periodic 
behavior. By computing the RTE as a function of � , we see 
that there are some periodic windows. For � ⪅ 0.9966 , the 
dynamics become periodic (Fig. 5(a)). The RTE information 
agrees with the bifurcation diagram, as shown in Fig. 5(b). 
The red and black points correspond to the x minimum and 
maximum values. The attractors in Fig. 6 display that the 
periodic behavior is a limit cycle that converges to a fixed 

Fig. 4   Time series for x in the panels (a) and (d), for y in the pan‑
els (b) and (e), and for z in panels (c) and (f). The panels (a–c) are 
for �1 = 0.4 and (d–f) for �1 = 0.6 . The black dotted lines are for 
� = 1.0 , the blue line is for � = 0.995 , the red line is for � = 0.98 
and the green line is for � = 0.95 . We consider �13 = 1.5 , �2 = 4.5 , 
�23 = 0.2 , �2 = 0.5 , �32 = 2.5 , x0 = 0.80 , y0 = 0.15 , and z0 = 0.05

Fig. 5   a RTE and b bifurcation diagram as a function of � . We con‑
sider �13 = 1.5 , �1 = 0.6 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 , �32 = 2.5 , 
x0 = 0.80 , y0 = 0.15 , z0 = 0.05 , and � = 0.01

Fig. 6   Phase portrait for different � values. The green curve is for 
� = 0.995 , the red curve for � = 0.975 , the blue curve for � = 0.936 , 
the orange curve for � = 0.915 and the black dot for � = 0.885 . We 
consider �1 = 0.6 , �13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 , and 
�32 = 2.5
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point as � approaches to 0.9. The green line is for � = 0.995 , 
the red line for � = 0.975 , the blue line for � = 0.936 , the 
orange line for � = 0.915 and the black dotted point for 
� = 0.885.

One way to differentiate fixed points and limit cycles is 
by computing the mean standard deviation ( � ). To do that, 
we discard a transient time ( � ). Considering this time series, 
we compute � . Figure 7(a) displays the parameter plane 
�1 × � as a function of � in color scale. The black points 
indicate when the solution is a fixed point ( 𝜎 < 10−3 ) and 
the colorful points indicate limit cycle solutions. Although 
some black points are mixed with colorful ones, a rela‑
tion between � and �1 separates most parts of the limit 
cycle from the fixed point solutions. This curve is indi‑
cated by the white dotted line in the panel (a) and is given 
by � = �1e

�2�1 + �3e
�4�1 , where �1 = 3.150 , �2 = −7.800 , 

�3 = 0.808 and �4 = 0.110 . Figure 7(b) exhibits the same 
plane parameter with the time to the solution for one ini‑
tial condition reaches the steady solution in the color scale. 
The black dotted line indicates a region of super transient, 
which is defined by � = �1e

�2�1 + �3e
�4�1 , where �1 = 3.25 , 

�2 = −7.7 , �3 = 0.802 , and �4 = 0.108 . Note that �i ≈ �i . In 
this way, the transition from the limit cycle to fixed points 
crosses a supper transient region.

As our results suggest, the transition from a limit cycle 
to fixed points is associated with a supper transient time. In 
this way, we select �1 = 0.6 and compute the mean transient 
time ⟨�⟩ for 100 different initial conditions close to the criti‑
cal point. The critical point defines the transition and equals 
�c = 0.899 . Figure 8 shows the mean transient time ( ⟨�⟩ ) as a 
function of |� − �c| by the black points. The average transient 
lifetime scales with � as a power-law according to

and has two slopes. By fitting the data (red line in Fig. 8), 
we obtain an exponent of � ≈ −3∕2 , with a correlation coef‑
ficient of 0.98 and � ≈ −1∕3 (green line) with a correlation 
coefficient of 0.99. All the points evolve to F5.

4 � Conclusions

In this work, we consider a fractional extension of a cancer 
model. This model describes the interactions among host, 
effector immune, and tumor cells. Due to the non-linearity, 
the dynamical behavior exhibits chaotic solutions for some 
parameter ranges. For the equations that govern the model, 
we obtain analytical solutions for the fixed points and dis‑
cuss their stability.

In order to study a more broad case, we consider numer‑
ical solutions. As previously reported works, we verify 
chaotic solutions for �1 = 0.6 . Furthermore, we construct 
bifurcation diagrams considering the maxima and mini‑
mum points of the host cells. The dynamical behavior 
exhibited by the bifurcation diagram also was verified by 

(24)⟨�⟩ ∝ �� − �c�� ,

Fig. 7   �1 × � as a function of � (mean standard deviation) in the 
panel (a) and � (average transient time) in the panel (b). We consider 
�13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 , and �32 = 2.5

Fig. 8   ⟨�⟩ versus |� − �
c
| , where �

c
= 0.899 . The curve has two 

slopes, in the red curve � ≈ −3∕2 and in the green � ≈ −1∕3 . The 
respective correlation coefficients are 0.98 and 0.99. We consider 
�1 = 0.6 , �13 = 1.5 , �2 = 4.5 , �23 = 0.2 , �2 = 0.5 , and �32 = 2.5
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the Lyapunov exponents and recurrence quantification 
analysis (RQA) measures. With regard to the RQA meas‑
ures, we compute the recurrence rate (RR), determinism 
(DET), and recurrence time entropy (RTE). All three of 
them agree with the results from the Lyapunov exponents. 
By computing the Pearson correlation coefficient between 
them and �1 , we observe a higher coefficient for the RTE. 
Thus, we consider only the RTE to analyze the effects of 
fractional order.

We study the effects of fractional operators in the can‑
cer model by the Caputo definition. Our main goal is to 
understand what happens in the chaotic behavior. By com‑
puting the RTE, our results suggest that the dynamical sys‑
tem becomes periodic for � ⪅ 0.9966 . When we look for 
the phase portrait, the results show that the solutions transit 
from a limit cycle to a fixed point, which is equal to the fixed 
points calculated analytically. The limit cycle regime is in 
the range � ∈ (0.9966, 0.899) for �1 = 0.6 . For different �1 
values, we construct the parameter space �1 × � as a function 
of the mean standard deviation � . Values of � close to zero 
show fixed point solutions. Our results show the existence of 
an exponential curve that delimits fixed point solutions from 
limit cycles in this parameter space. Also, we analyze the 
transient time related to the transition from the limit cycle 
to a fixed point. For �1 = 0.6 , we find that for 𝛼 < 0.899 the 
dynamics go to the fixed point F5 by a super transient with 
order 104 . The super transient curve follows a linear decay 
according to two slopes, equal to −3∕2 and −1∕3.

Appendix

In Sect. 2, we introduced the cancer model and analyzed its 
dynamics for different parameter values by means of a bifur‑
cation diagram, the Lyapunov exponents, and three RQA 

measures: RR, DET, and RTE. We chose the threshold � to 
be � = 0.01 . Many researchers have addressed the problem 
of finding the best value of � [91–94]. Here, we used the cor‑
relation coefficient, Eq. (19), to determine � . We computed 
the RTE as a function of �1 for different threshold values, 
ranging from 10−5 to 10−1 , and calculated the correlation 
coefficient between �1 and RTE (Fig. 9). Even if we choose 
a very small � ( 10−5 ) or a relatively large � ( 10−1 ), we still 
obtain a rather high correlation coefficient, with the high‑
est value being around � ≈ 10−2 , and hence our choice of � . 
Furthermore, the fact that ��1,RTE does not change too much 
within this range of � indicates that, in our case, the choice of 
� is not as sensible as it would be in other cases. In fact, there 
is a wide range of values for � in which the results are good.
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