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a b s t r a c t

The study of chimera states or, more generally, coherence–incoherence patterns has led
to the development of several tools for their identification and characterization. In this
work, we extend the eigenvalue decomposition method to distinguish between single-
well (SW) and double-well (DW) patterns. By applying our method, we are able to
identify the following four types of dynamical patterns in a ring of nonlocally coupled
Chua circuits and nonlocally coupled cubic maps: SW cluster, SW coherence–incoherence
pattern, DW cluster, and DW coherence–incoherence. In a ring-star network of Chua
circuits, we investigate the influence of adding a central node on the spatio-temporal
patterns. Our results show that increasing the coupling with the central node favors the
occurrence of SW coherence–incoherence states. We observe that the boundaries of the
attraction basins resemble fractal and riddled structures.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Since Huygen’s discovery of synchronization [1], coupled oscillators have became an important paradigm in nonlinear
cience. Numerous studies were devoted to synchronized and desynchronized oscillations. Kuramoto and Battogtokh [2]
bserved a coexistence of synchronous and asynchronous oscillations [3], known as chimera state [4], in a network of
oupled phase oscillators. Since then chimera states have been studied in various systems ranging from chemical [5–8],
lectronic oscillators [9–11] to neuron systems [12–15]. Different classification schemes to identify chimera states were
roposed [16,17]. Researchers have considered various topologies of networks to study the emergence of chimeras, such
s ring-star [18], lattice [19–21], multiplex networks of both discrete [22,23] and continuous dynamical systems [24–26].
he effects of different coupling topologies have been investigated [17,27]. One motivation for such an exploration of
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topologies is that some neuronal dysfunctions might be associated with chimera states in the presence of certain network
structures [28]. Chimera states were found in natural systems such as interacting fireflies or mechanical experiments [29].

Throughout the years, several measures have been used to identify and characterize these states, some examples
re local and global order parameter [2,4,30,31], strength of incoherence [32], recurrence quantification analysis [33],
patial and temporal correlation measures [34], spatial inverse participation ratio [35] and eigenvalue decomposition [36].
lthough they might be efficient in distinguishing between coherent, incoherent and chimera states, as far as our
nowledge goes these measures are not able to separate states like single-well from double-well states. Meanwhile, many
ifferent patterns containing coherent and incoherent parts are often referred to as chimeras in the literature. Sometimes
hese patterns have no obvious relation to the chimera states originally described in [2], as in the case of our work. To
void confusion, we use the more general term coherence–incoherence patterns in this work.
Multistability is a phenomenon that appears in a large class of dynamical systems. It refers to the coexistence of

multiple attractors (at least two) in the dynamical system for the same set of parameter values. Different initial conditions
in the phase space then leads to different attractors. From a dynamical perspective, the presence of multiple attractors
is a striking feature. There are many studies in the literature with applications of multistability in neuroscience [37],
optics [38], or engineering systems [39]. In an extreme case, infinitely many attractors can coexist [40]. Recently,
a detailed geometric mechanism behind such a phenomenon was studied in Refs. [41,42]. The coexistence of two
different coherence–incoherence states for the same set of parameter values was also observed. In a network of Chua’s
circuits [18,43] and in a network of cubic maps [43], it was verified that both single-well (SW) and double-well (DW)
coherence–incoherence states coexist for the same parameter set. In that case, different initial conditions can induce
different states, such as SW and DW coherence–incoherence states [18,43,44].

The Chua’s circuit is known for its simplicity in terms of its components. It contains one inductor, one diode, two
capacitors, and one nonlinear resistor [45]. The Chua’s circuit has been applied in secure communication systems [46],
Gaussian colored noise [47], and hand-written patterns recognition [48]. It is also well known for its double-scroll
attractor. Different spatiotemporal patterns, for instance, spiral waves, have been found in networks of coupled Chua’s
oscillators [49]. As for the cubic map, it is the simplest map to present bistable dynamics and it can be thought as an
analog of the Chua’s circuit for discrete-time systems [50]. This map can demonstrate both regular and chaotic dynamics
depending on its parameters, and the SW and DW coherence–incoherence states were observed in a network of coupled
cubic maps with chaotic bistable dynamics [43].

The purpose of this work is threefold. (i) The first is to identify and characterize two different coherence–incoherence
states, as well as cluster states, using an extension of the method of eigenvalue decomposition [36]. We use a network of
Chua’s circuits and a network of cubic maps to demonstrate our methodology. (ii) The second purpose is to explore the
coexistence of spatio-temporal patterns, and the (iii) last one is to analyze the basins of attraction in the space of initial
conditions. We study the coexistence of coherence–incoherence states in a network of Chua’s circuits and compute the
basins of attraction of each state present in the system for a set of parameters [51].

The paper is organized as follows. Section 2 illustrates the method used to characterize different network states such
as cluster synchronization, desynchronization, SW coherence–incoherence state, and DW coherence-incoherene state.
Section 3 introduces the ring-star network of Chua circuits and the network of cubic maps. Section 4 discusses the
existence of bistability of coherence–incoherence states in the Chua’s network and Section 5 presents our final remarks.

2. Methodology

Aiming to characterize the distinct dynamical states in a network of coupled oscillators, we extend the method of
eigenvalue decomposition [36]. We begin by numerically integrating the equations of motion, in case of a flow, or by
iterating the difference equations, in case of a mapping, to obtain the state variables time series xi(t). We then construct
he symmetric spatial distance matrix d, according to

dij =
⟨
∥xi(t) − xj(t)∥

⟩
t , (1)

here ∥ · ∥ is the Euclidean norm, ⟨·⟩t denotes the average in time, i, j = 1, 2, . . . ,N , and N is the network size. If dij ≈ 0,
he nodes i and j are coherent and large values of dij indicate incoherence. From d, we define a binary matrix with elements
qual to 1 and 0 denoting coherence and incoherence, respectively. These elements are computed as

Lsij = Θ
(
δs − dij

)
, (2)

where δs > 0 is a small threshold and Θ is the Heaviside function. Defined this way, Lsij equals 1 if the absolute difference
of xi and xj is smaller than δs and zero otherwise. This definition of Lsij is similar to the definition of the recurrence matrix
sed in the recurrence quantification analysis [52–57], however, the recurrence matrix is evaluated using the time series
f the state variables and our matrix is evaluated using the state variables of the nodes in the network. Such definition is
ften called spatial recurrence plot [33,58].
In the case of a completely incoherent state, the matrix Ls is the identity matrix and all its eigenvalues are equal to 1.

s
hen some of the nodes are coherent, some off-diagonal elements of L are nonzero and there are eigenvalues greater
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than 1 and eigenvalues less than 1 in order to satisfy
∑

k λk = tr(Ls) = N ,1 where tr(Ls) is the trace of Ls. Parastesh
t al. [36] reported that these eigenvalues are related to the coherent nodes and the corresponding eigenvectors show
he positions of the synchronized nodes in the network. By comparing the elements of the eigenvectors, one can obtain
he number of incoherent nodes of the network.

The drawback of this methodology is that one cannot apply it to large networks because the computational cost of
he evaluation of eigenvalues and eigenvectors of large matrices is too high. One can, however, use the properties of the
igenvalues and eigenvectors reported by Parastesh et al. to simplify the method while getting the same results. Here
e focus on the sum of the elements of each column of the binary matrix, sj =

∑
i L

s
ij. If the jth node is incoherent with

he rest of the network, then sj = 1, as all elements of this column are zero except for the diagonal element. If there is
oherence with another node, then sj > 1. In this way, one can detect the positions of the synchronized nodes in the
etwork.

. Network models and pattern detection

In this study, we investigate the dynamics of a network of N + 1 identical Chua’s oscillators coupled in the ring-star
opology and the dynamics of N identical cubic maps coupled in the ring topology. First we focus on finding how to
istinguish between the different dynamical behaviors present in the systems using our methodology. Then, we study
ow spatio-temporal patterns change as a coupling parameter is varied.

.1. Chua circuits

The network topology of the coupled Chua’s circuits is a mixture of the nonlocal circular ring topology, composed of
nodes, and the star topology. The dynamics of the nodes in the ring is given by

ẋi = fx(xi, yi, zi) + k(xN+1 − xi) +
σ

2rN

i+rN∑
j=i−rN

(xj − xi),

ẏi = fy(xi, yi, zi) +
σ

2rN

i+rN∑
j=i−rN

(yj − yi),

żi = fz(xi, yi, zi).

(3)

for i = 1, 2, . . . ,N and the indices are considered modulo N . The dynamics of the central node is given by

ẋN+1 = fx(xN+1, yN+1, zN+1) +
k
N

N∑
j=1

(xj − xN+1),

ẏN+1 = fy(xN+1, yN+1, zN+1),
żN+1 = fz(xN+1, yN+1, zN+1).

(4)

In Eqs. (3) and (4), xi, yi, and zi are the dynamical variables of the ith node, k ≥ 0 is the star topology coupling intensity,
nd σ ∈ [0, 1] and r ∈ [0, 0.5] are the coupling intensity and the coupling radius of the ring topology, respectively. The
unctions fx, fy, and fz are the governing equations of the uncoupled node, which have the following form for the Chua’s
ircuit:

fx = α

{
y − x −

[
Bx +

1
2
(A − B)(|x + 1| − |x − 1|)

]}
, (5)

fy = x − y + z, (6)

fz = −βy, (7)

with the parameters A = −1.143, B = −0.714, α = 9.4, and β = 14.28. For these parameter values, the Chua’s system
shows its well-known double-scroll regime [59]. The size of the ring network is set to N = 150, the coupling range to
r = 1/3, the ring coupling strength to σ = 0.68, and the star coupling intensity to k = 0.005.

We consider parameters in which the oscillators stay in a single scroll attractor. These dynamic states have recently
been called SW or DW [18]. In the case of a SW dynamics, all the oscillators in the network belong to the same region of
the phase space. In the DW, the dynamics of a fraction of oscillators is constrained to a region of the phase space, whereas
the rest of them are constrained to a different, symmetric region. We remark that the uncoupled as well as coupled system
(3)–(4) of Chua’s circuits possesses a central symmetry, i.e., the system is equivariant with respect to the transformation
xi ↦→ −xi, yi ↦→ −yi, and zi ↦→ −zi for all i. In particular, this guarantees a coexistence of two stable symmetric SW
attractors in the uncoupled system.

1 The binary distance matrix has the properties of the correlation matrix.
3
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Fig. 1. The snapshots of xi(t) at t = 4600 (1st row) and the spatio-temporal evolution of xi(t) (2nd row) of Eqs. (3) and (4), the distance matrix (3rd
row), the binary distance matrix with a small threshold δs with yellow vertical lines indicating the positions of the desynchronized nodes (4rd row),
and the binary distance matrix with a large threshold δℓ (5th row) for (a) SW cluster state, (b) DW cluster state, (c) SW coherence–incoherence
state, and (d) DW coherence–incoherence state. Parameters used are N = 150, σ = 0.68, r = 1/3, k = 0.005, δs = 0.03, δℓ = 2.0, A = −1.143,
B = −0.714, α = 9.4, and β = 14.28.

In order to observe these different dynamics, we consider all nodes to be at the unstable fixed point at the origin
except for node i = 1, i.e., (xi, yi, zi) = (0, 0, 0) for i = 2, 3, . . . ,N + 1. The first row of Fig. 1 shows the snapshots of
xi at t = 4600 and the second row shows spatio-temporal evolution of xi(t) for four different initial conditions, i.e., four
different values of (x1, y1, z1). In Fig. 1(a1) we observe a SW cluster synchronization (SW-CL) dynamics [60–62]. In this
case, the dynamics can be divided into two groups of oscillators with correlated dynamics, however the dynamics of all
of them are roughly bound to the region xi < 0. In Fig. 1(b1) we also observe the presence of groups of oscillators with
correlated dynamics. In this second case, the dynamics of some of the oscillators are constrained to a region given roughly
by xi > 0, which is referred to as DW cluster synchronization (DW-CL). Fig. 1(c1) displays a SW dynamics, in which some
oscillators are not coherent with any of the others. This state is referred to as SW coherence–incoherence state (SW-CI).
Fig. 1(d1) exhibits a DW dynamics, where some of the oscillators are incoherent with the rest of the oscillators in the
network. This last case is referred to as DW coherence–incoherence state (DW-CI).

In order to quantify whether the state of the network is a coherence–incoherence or a cluster synchronization pattern
we proceed in the following way:
4
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Fig. 2. The C value and the first three largest eigenvalues of the binary distance matrix as a function of the threshold δ of the binary distance
atrix of Chua’s network. (a) SW cluster state, (b) DW cluster state, (c) SW coherence–incoherence state, and (d) DW coherence–incoherence state.
arameters used are N = 150, σ = 0.68, r = 1/3, k = 0.005, A = −1.143, B = −0.714, α = 9.4, and β = 14.28.

1. Sum the elements of each column of the binary matrix: sj =
∑

i L
s
ij, for i, j = 1, 2, . . . ,N , i.e., excluding the central

node.
2. Apply the sign function on the sum of each column as Si = sign(si − 1). This function assigns the value 1 to the

coherent nodes, as si > 1, and the value 0 for the incoherent ones. Note that an incoherent node will have si = 1,
so that the only nonzero element is the diagonal of the matrix, which will result in Si = 0.

3. Sum the elements of S: C =
∑N

i=1 Si. C = N represents cluster synchronization and C = 0 shows that all the nodes
are desynchronized. The coherence–incoherence state is characterized by intermediate values of C , 0 < C < N , i.e.,
C nodes belong to synchronized clusters and N − C nodes are desynchronized.

We apply the above methodology to the states shown in the first row of Fig. 1. The third row of Fig. 1 shows the
istance matrix dij and the fourth row of Fig. 1 displays the binary matrix Lsij of the corresponding states for a small
hreshold δs = 0.03. For the first two states (a) and (b), every node is coherent with at least one other node of the
etwork and, hence, C = N and we observe a cluster synchronization [36]. For the remaining two states (c) and (d), it
olds C < N , and we identify the incoherent nodes as the ones whose row/column of the binary matrix has all elements
qual to zero but the diagonal one. We plot yellow stripes in the panels (c1) and (d1) to emphasize these nodes.
The performed procedure allows us to distinguish among cluster, coherence–incoherence, and desynchronized states.

owever, this method alone does not differentiate between SW and DW dynamics. In order to accomplish this, we first
ote from Fig. 1 that for the DW dynamics some of the elements of the distance matrix are large when compared to the
W case. Thus, by changing the threshold δ, we are able to differentiate between the SW and DW states. Indeed, the last
ow of Fig. 1 shows the binary matrix Lℓ

ij for a large threshold δℓ = 2.0. For the SW cases, we see that all elements of the
inary matrix equal 1 whereas for the DW cases some of them are 0. In this way, we can simply check if Lℓ

ij = 0 for some
, j, and in the affirmative case, the state is a DW state.

In the recurrence analysis, there are several approaches to calculate the threshold δ. Here, we make use of two threshold
alues, δs and δℓ, whose definition is based on the relation between the C value and the three largest eigenvalues of the
inary recurrence matrix with δ. To corroborate this methodology, we evaluate the C value and the first three largest
igenvalues of the binary matrix (red, blue, and purple, respectively) as a function of the threshold δ (Fig. 2). We verify
hat for small values of δ, the C value is equal to N for the cluster states. However, it is less than N for the coherence–
ncoherence states. Increasing δ, the binary matrix has only one eigenvalue larger than 0 in the SW cases, which equals
he size of the matrix, and it has two in the DW cases. This fact confirms our previous statement that for SW dynamics
ℓ
ij = 1 for all i, j, as such a matrix has N − 1 zero eigenvalues and one equal to N . Therefore, in order to distinguish
mong cluster, coherence–incoherence, and desynchronized states, we use a small threshold δs = 0.03 and calculate C .
hen, we check if the binary matrix for a large threshold δℓ = 2.0 has all its elements equal to 1. If so, the state is SW, and
W otherwise. Lastly, in Fig. 3, we show in blue a snapshot of xi(t) of the nodes at t = 4600. We separate the snapshots
etween SW and DW dynamics. In red, we plot the components of the vector Si, which is used to identify coherent and
ncoherent regions in the network. And we also plot the projection of the dynamics of some sample nodes in the (x, y)
lane for each case.

.2. Cubic maps

Another paradigmatic system that was reported to show SW and DW dynamics is a network of coupled cubic maps,
escribed by the following equations [43]:

xi(n + 1) = fi(n) +
σ

2rN

i+rN∑
j=i−rN

[
fj(n) − fi(n)

]
,

fi(x) =
(
αxi − x3i

)
exp

(
−

x2i
)

,

(8)
β

5
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Fig. 3. (first row) Snapshots of xi of the Chua’s network at t = 4600 and the vector Si , and (second row) the phase space for three different nodes
of a (a) SW cluster state, (b) DW cluster state, (c) SW coherence–incoherence state, and (d) DW coherence–incoherence state. Parameters used are
N = 150, σ = 0.68, r = 1/3, k = 0.005, δs = 0.03, A = −1.143, B = −0.714, α = 9.4 and β = 14.28.

here i = 1, 2, . . . ,N , N is the size of the network, σ ∈ [0, 1] and r ∈ [0, 0.5] are the coupling strength and coupling
radius, respectively, and α and β are the control parameters of the map. The cubic map can be thought of as an analog
of the Chua’s circuit with chaotic dynamics for discrete-time systems and the cubic map is the simplest map to present
bistable dynamics [50]. We remark here again the central symmetry xi ↦→ −xi leading to the emergence of symmetric
coexisting attractors.

For the control parameters we set α = 3, β = 10, that correspond to a chaotic attractor of the map [43], and
N = 300 for the network size. As the coupling strength and coupling radius change, different regimes are observed
in the system [43], such as complete chaotic synchronization, partial coherence with SW and DW structures, and SW and
DW coherence–incoherence. By applying our methodology using the parameters (σ , r) reported in [43], we are indeed
able to distinguish cluster synchronization from coherence–incoherence states and SW from DW as well. In Fig. 4 are
shown the spatiotemporal evolution of xi of the system (8) and in blue a snapshot of xi at n = 1000, and in red we
plot the components of the vector Si. The parameters are (a) (σ , r) = (0.8, 0.275), (b) (σ , r) = (0.6, 0.2), (c) and (d)
σ , r) = (0.45, 0.2), and we choose random initial conditions for all the nodes in the interval x ∈ [−2, 2]. For the
oherence–incoherence detection, we use δs = 0.06 and for the SW/DW distinction δℓ = 2.0.
For the first two states, Fig. 4(a) and (b), as all elements of Si equal to 1, we get C = N , that corresponds to cluster

ynchronization. Whereas for the last two states, we observe C < N , indicating partial incoherence in the network. By
ncreasing the threshold, as mentioned before, we are also able to distinguish between the SW states from the DW states.

Therefore, this methodology is a powerful tool in the detection of different dynamical behavior in networks of coupled
scillators. We would like to stress that the methodology proposed by Parastesh et al. [36] using the local order parameter
atrix also gives similar results (not shown). However we use the distance matrix as it is simpler and it has a more direct

nterpretation in terms of synchronized/desynchronized states.
In the next section we employ our methodology to study how changes in the star coupling strength affects the spatial

tates of the network of N + 1 Chua circuits, given by Eqs. (3) and (4).

. Coexistence of different states and parameter dependence

Here we study how spatio-temporal patterns change with varying parameters. Also, perturbed initial conditions can
ead to completely different dynamics, due to complex structures of the basin of attraction [51,63]. As a first analysis of
he influence of the central node on the ring network dynamics, we calculate the basin stability (BS) [64,65] for each of
he four types of states in our network and its change when k is varied.

To estimate the value of BS, we consider 1000 random initial conditions in the interval [−1, 1] for x1(0) and y1(0), and
alculate the fraction of these points that converge to each of the four observable dynamics in the network. In that way,
S provides the proportion of the volumes of the basins of attraction for a given interval [66–68].
6
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Fig. 4. The spatio-temporal evolution of xi(n) of Eqs. (8) (first row), the snapshot of xi at n = 1000 in blue, and the components of the vector Si
n red (second row) for a (a) SW cluster with (σ , r) = (0.8, 0.275), (b) DW cluster with (σ , r) = (0.6, 0.2), (c) SW coherence–incoherence with
σ , r) = (0.45, 0.2) and (d) DW coherence–incoherence with (σ , r) = (0.45.0.2). The others parameters are α = 3, β = 10, N = 300, δs = 0.06 and
ℓ = 2.0.

In Fig. 5(a)–(c), we plot the value of BS obtained for k in the interval [0.0, 0.03] for three distinct network sizes (a)
N = 125, (b) N = 150, and (c) N = 175. The color code used is as follows: blue for SW cluster states, green for DW cluster
states, red for SW coherence–incoherence states, and yellow for DW coherence–incoherence states. From the graphs, we
see that for k = 0 the basins of all the states have approximately the same volume. By increasing the value of k, we verify
that the basin of DW-CL begins to diminish so that from k = 0.015, those states are not observed in the network. We may
also note that this happens independently of the network size N . By increasing k even further the basins of both SW-CL
and DW-CI also get smaller, in a way that there is a dominance of SW-CI. The influence of the central node in the ring
network dynamics is such that it privileges the SW-CI and suppresses the other types of dynamics observed for k = 0.

In Fig. 5(d)–(i) we plot the value of BS for the same range of k, but with fixed N = 150 and varying the ring coupling
parameter σ . This allows for an investigation about the parameter space (σ , k). The coupling strengths used are (d)
σ = 0.10, (e) σ = 0.25, (f) σ = 0.40, (g) σ = 0.68, (h) σ = 0.75, and (i) σ = 0.90. We can see from the graphs that
an increase in the value of σ takes the distribution of states from mostly incoherent states, Fig. 5(d), to predominantly
coherence–incoherence states of both single-well and double-well dynamics, Fig. 5(e)–(g), and then to the predominance
of SW and DW cluster states, Fig. 5(h)–(i). We note that for this cases also, the increasing in k tends to increase the
probability of observing SW dynamics, that being a consequence of the coupling with the central node.

In Fig. 6, we plot the basins of attraction for different values of k. To obtain the basins, we consider the initial conditions
as (xj, yj, zj) = (0, 0, 0) for j = 2, . . . ,N + 1 when t = 0, and vary x1(0) and y1(0) in the interval [−1, 1]. In other words,
all nodes start at the unstable fixed point at the origin, except for node i = 1. For this node, the values of x1(0) and y1(0)
are homogeneously distributed in the interval [−1, 1] using a grid of 540 × 540. Each initial condition is then numerically
integrated and the dynamical state of the network after a total integration time t = 4600 is analyzed. The color attributed
to each point is blue for SW cluster states, green for DW cluster states, red for SW coherence–incoherence states, or yellow
for DW coherence–incoherence states.

Without the presence of the central node (Fig. 6(a) and (b)), the basins show a very complex structure, with the basins
of each of the states occupying a significant part of the given region. For k = 0.005 (Fig. 6(c) and (d)), we perceive a very
significant change in the structure of the basins, even though the change in BS is more subtle. Moreover, the magnifications
of the regions indicated by the white rectangles (Fig. 6(b) and (d)) show that the boundaries of the basins resemble fractal
and riddled structures [69,70]. In Fig. 6(e), we consider k = 0.0075, for this value the BS of DW-CI is larger (Fig. 5), and
we find a significant decrease in the size of the basin of DW-CL. In Fig. 6(f), (g), and (h), we increase the central node
coupling to k = 0.01, k = 0.02, and k = 0.03, respectively. We see from these panels that the blue, green and yellow
regions almost vanish, and mostly the basin of SW-CI remains, although riddled with points from the other basins.

To verify whether the basins in the x1(0) × y1(0) space are indeed fractal, we measure the box-counting dimension
through the uncertainty fraction method [71–73]. Given a region in this space, such as the ones depicted in Fig. 6, we
consider a large number of randomly chosen initial conditions. For each initial condition, we check the final state of the
network. We then perturb each initial condition in the x1(0) direction by ±ϵ, and we check the final state of the network
for these new two initial conditions. If either of the two perturbed initial conditions has a different result, we say the
original initial condition is uncertain. The uncertainty fraction, f (ϵ), is the ratio between the number of uncertain initial
conditions and the total number of them. We repeat these computations five times with 2000 initial conditions for each
7
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Fig. 5. Fraction of initial conditions that converges to each state as a function of k for Chua’s network sizes (a) N = 125, (b) N = 150, and (c) N = 175
ith σ = 0.68, and for a fixed network size of N = 150 with coupling strengths (d) σ = 0.10, (e) σ = 0.25, (f) σ = 0.40, (g) σ = 0.68, (h) σ = 0.75,
nd (i) σ = 0.90. The initial conditions were taken from a uniform random distribution in the interval [−1, 1] for x1(0) and y1(0) with z1(0) = 0.
he color code used is black for divergent states, blue for SW cluster states, green for DW cluster states, red for SW coherence–incoherence states,
ellow for DW coherence–incoherence states, and white for incoherence states. Other parameters are r = 1/3, δs = 0.03, δℓ = 2.0, A = −1.143,
= −0.714, α = 9.4, and β = 14.28.

Fig. 6. Basins of attraction of the ring-star network of Chua’s circuits in a grid of 540 × 540 initial conditions for different k values. In (a) and (b)
k = 0.0, (c) and (d) k = 0.005, (e) k = 0.0075, (f) k = 0.01, (g) k = 0.02, and (h) k = 0.03. The color code used is blue for SW cluster states, green
for DW cluster states, red for SW coherence–incoherence states, and yellow for DW coherence–incoherence states. Other parameters are N = 150,

= 0.68, r = 1/3, δs = 0.03, δℓ = 2.0, A = −1.143, B = −0.714, α = 9.4, and β = 14.28.
8
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Fig. 7. The uncertainty fraction for (a) k = 0.0, (b) k = 0.005, (c) k = 0.0075, and (d) k = 0.01. The dashed red lines indicate the slope of f (ϵ).
Each point is the average of four computations with 2000 distinct initial conditions. Other parameters are N = 150, σ = 0.68, r = 1/3, δs = 0.03,
δℓ = 2.0, A = −1.143, B = −0.714, α = 9.4, and β = 14.28.

value of ϵ, which we vary from 10−1 to 10−12. For smooth basins, f (ϵ) ∼ ϵ. If the basin is fractal, f (ϵ) is expected to scale
with ϵ as

f (ϵ) ∼ ϵγ , (9)

where γ is the uncertainty exponent. We compute the uncertainty exponent for each one of the five computations and
take its mean and standard deviation: γ = γ ± σγ .

It is possible to express the box-counting dimension in terms of the uncertainty exponent. Let D be the dimension of
the space and N(η) be the minimum number of D-dimensional boxes of length η necessary to cover the basin’s boundary.
The box-counting dimension of the latter is

d = lim
η→0

lnN(η)
ln 1/η

, (10)

uch that N(η) ∼ η−d for η small enough. By setting η ≡ ϵ, the volume of the uncertain region is N(ϵ)ϵD
∼ ϵD−d, where

D is the volume of the boxes. Therefore, the uncertainty exponent is [72]

γ = D − d. (11)

n our case, D = 2 and a smooth boundary, which has d = 1, has γ = 1, whereas a fractal boundary is characterized by
∈ (0, 1). Fractal structures can be found in a variety of nonlinear systems [74]. The presence of fractal boundaries in these

ystems obstructs predictability [71], and f (ϵ) can be understood as a measure of this unpredictability. In cases where
he boundaries are fractal, a significant reduction in the initial condition uncertainty ϵ may be necessary to minimize the
ncertainty in the final state.
The uncertainty exponent can be estimated from the slope in the log f (ϵ)–log ϵ plot (Fig. 7). For k = 0.0, we obtain an

ncertainty exponent of γ = 0.0459 ± 0.0003, and a dimension of d = 1.9541 ± 0.0003, which means the basin indeed
xhibits fractal structures. The uncertainty exponents for k = 0.005, 0.0075, and 0.01 are very small, and the dimensions
re approximately equal to D = 2. This is an indication of the existence of a riddled basin: the probability of finding an
ncertain initial condition, f (ϵ), is constant regardless of the size of the initial condition uncertainty, ϵ. In other words,
ecreasing the uncertainty in the initial condition does not decrease the uncertainty in the final state.

. Conclusions

We have analyzed the influence of a central node in a network of nonlocally coupled systems. We first characterized
he dynamical states in a network of Chua’s oscillators and in a network of cubic maps. By considering two values of the
hreshold to define the binary matrix L, we were able to separate the dynamics among SW cluster states, SW coherence–
ncoherence states, DW cluster states, and DW coherence–incoherence states. We have also tested whether the maximum
istance, instead of the mean distance, in the definition (1), should be a better choice. However our simulations indicated
hat is not the case, as the maximum distance detected some false positive DW states (not shown).

The estimation of basin stability allowed us to verify how the probability of obtaining each state changes by increasing
he strength of the central node coupling k. This analysis showed that the influence of the central node causes the
uppression of some dynamical states, increasing the size of SW-CI basin. Although it allows us to see the fraction of
nitial conditions that converge to each state, BS alone cannot tell us much about the structures in the basins. From Fig. 6,
e see that the structures are very complex and the magnifications (Fig. 6(b) and (d)) show that the basins may have

ractal and riddled structures. This hypothesis is confirmed by the estimate of the uncertainty fraction for these basins
Fig. 7(a)–(d)). From these figures, we verify that the changes in the proportions of each state happens simultaneously
ith drastic changes in their boundaries. For larger values of k, the basin of SW-CI dominates and is riddled with points
f the other states.
9
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An interesting point for future studies could be a more detailed analysis of a coexistence of different coherence–
ncoherence patterns. Indeed, our method allows to distinguish four big classes of patterns: SW and DW clusters, SW
nd DW coherence–incoherence patterns. However, it is obvious that there can be a high multistability within each class
f these solutions, which makes the problem even more challenging. Also, one limitation of our method is the necessity
f stability of the coherence–incoherence pattern over some time interval. Patterns in which the position and size of
he incoherent region are too unstable hinder the correct identification of such regions. The situation can become even
ore complicated if the dynamics of the node has a more complicated symmetry than a central symmetry considered in
ur work. For example, Sn symmetry may lead to a coexistence of n symmetric attractors in the node’s dynamics which

could lead to n-well states. In the same direction, the studies of these patterns in higher-order interaction networks
could be another perspective for future research. Recently, the studies on this direction has been started [75,76] and the
understanding is not yet completed.
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