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Abstract
The boundary wall method (BWM) is a general purpose protocol to treat
boundary value problems for wave equations, specially Helmholtz’s (the case
addressed here). Similarly to most approaches, the BWM may be computation-
ally demanding for large borders C, at which the wave function must satisfy
specified boundary conditions. Also, despite the fact the BWM is an exact pro-
cedure, usually it is not amenable to closed form solutions. The BWM relies
on the Green’s function G0 of the embedding domain V of C. However, in
many instances—like for C modeling a billiard—the specific V is not really
fundamental and thus one has a certain freedom to choose distinct domains and
so G0’s. Here we consider this characteristic of the BWM and show how to
obtain some analytical results and solve numerically semi-infinite waveguides
by exploring proper Green’s functions. As examples, we discuss rectangular,
triangular and trapezoidal structures with both Dirichlet and leaking boundaries
as well as scattering states within semi-infinite rectangular waveguides.
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1. Introduction

It is needless to emphasizes the relevance of boundary value problems in physics [1, 2]. In fact,
more broadly in almost all basic and applied areas of science one can find important phenomena
modeled by partial differential equations obeying specific boundary conditions (BCs). This has
prompted a large literature on the topic (for a very short glimpse see, e.g., [3–7]), motivating
the development of innumerous analytic [8] and numerical [9] procedures to treat such a huge
class of systems.

Certainly, a fundamental family of boundary value problems is that associated to undulatory
behavior [10]. Among the many existing exact approaches to solve wave equations [11] (and
in this contribution we concentrate on the Helmholtz operator, namely,∇2 + k2), the boundary
wall method (BWM), proposed more two decades ago [12], is particularly distinct in the way
it handles the BCs, which can be Dirichlet, Neumann, mixed or Robin [1], as well as leaking
borders [13]. In the BWM, the connected or disconnected, open or closed, spatial frontiers of
the system are viewed as sharp-walled boundaries C’s (e.g., C1, C2 and C3 depicted in figure 1)
and described by δ-wall potentials (details in section 2). Thus, by assuming C an effective
potential, one can consider the Lippmann–Schwinger equation [10, 14] to solve the problem.
The correct BCs are achieved by means of proper features assumed for the δ-wall potentials.
Despite its scattering-like character, for C a closed shape, say a billiard, the BWM properly
leads to the correct eigenstates and eigenenergies of the C inner region. A pertinent techni-
cal advantage is that the resulting integral equation—running just on the contour C, instead
over the full spatial domain V , and involving the ‘free’ Green’s function G0 of V—yields,
for each wavenumber k, the wave solution ψk(r) everywhere in V . For instance, for billiards
there is no need for an ‘inside’ and an ‘outside’ integral equation, like in the boundary integral
method.

A very comprehensive mathematical and numerical (for this latter see also [12]) review
of the BWM can be found in [15]. For instance, reference [15] discusses that formally the
framework corresponds to a reformulation of standard single-layer boundary integral methods
[4], leading to a first-kind Fredholm equation (a feature of the BWM recently used in con-
crete calculations [16, 17]). Further conceptual aspects of the BWM have been examined in
[18]. Also, the BWM is valid in any spatial dimension (see, e.g., [12, 19]). The BWM has been
employed in many distinct applications, as for the investigation of matter waves [20–22], anal-
ysis of diverse optical processes [23–26] and description of certain nanostructure properties
[18, 27, 28].

The different usages mentioned above illustrates the versatility of the BWM. But similarly to
many boundary value problem protocols [4, 5], some issue for the BWM may also arise. Here
we mention the eventually two most important ones. First, the great majority of the studies
employing the BWM are numerical. Indeed, one of the main advantages of the approach is its
straightforward numerical implementation [12, 15, 21, 24]. Nevertheless, the necessary com-
putational work may be demanding if the linear lengths associated to C are too long compared
to the typical wavelengths λ = 2π/k considered, e.g., if one shall simulate very long waveg-
uides in the regime of high frequency modes—refer to [18]. Second, there are just few exact
analytical results derived with the BWM. We can cite straight lines [12] and circles [12, 18],
with this latter shape being recently revisited in terms of particular integral equation solution
techniques applied to the BWM [16]. Moreover, a 2D elliptical billiard [17] (for numerics see
[27]) and a 3D spheroidal barrier [19] have being analyzed through ingenious transformations
and appropriate coordinate system choices for the BWM associated expressions. In all these
cases, V is taken as the whole 2D or 3D space, thus with the polar or spherical symmetries of
G0 greatly complying with those of the investigated C’s. Unfortunately, such type of symmetry
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Figure 1. The BWM assumes that for the ‘free region’ V ∈ R
N , the Green’s function

is given by G0, where proper BCs are imposed on the borders CV of V . If CV goes
to infinite, then V = R

N and G0 is in fact the Green’s function for the whole free
space, the situation usually considered in the BWM. By describing arbitrary closed
(e.g., C1), open connected (e.g., C2), and open disconnected (e.g., C3) sharp-walled struc-
tures—which can satisfy distinct BCs—as δ-wall potentials, the BWM is able to obtain
outside scattering and/or inside bound states in terms of a scattering approach based on
a Lippmann–Schwinger-like equation.

matching, greatly mitigating the mentioned explicit computations, cannot be explored, e.g., for
rectangular, cubic, etc, structures using these same G0’s.

A totally unexplored ingredient of the BWM is that it does not demand the original domain
V , in which C is embedded, to be the entire free R

N . Actually, there is a great freedom (once
some conditions are observed, section 2.1) to select V . Therefore, depending on the particular
C, one might try to choose V such that (i) the corresponding G0 is easy to obtain and (ii) the
exact form of G0 simplifies either analytically or numerically the calculations with the BWM.
Given such perspective, our goal in the present contribution is to show how proper V’s—more
concretely, the interior of semi-infinite waveguides—lead to Green’s functions which consid-
erably facilitates the analysis of distinct C’s using the BWM. Our general considerations here
are valid for arbitrary dimensions. But for the concrete examples we present along the work,
we focus just on the 2D case.

The paper is organized as the following. In section 2 we present a short overview on the
BWM, also explaining how it can be implemented supposing distinct V’s, thence G0’s. In
section 3 we discuss a general prescription to derive the exact Green’s function for certain
types of semi-infinite waveguides, useful for our purposes. As an illustration we consider the
rectangular semi-infinite waveguide in 2D. In section 4 we assume the waveguide domain
V explicitly calculated in section 3 and examine different applications. We obtain analytical
results for both a rectangular billiard and a waveguide with a permeable resonant structure in
its extreme. Numerical eigenstates and eigenvalues are computed for right triangle and square
trapezium billiards as well as for a waveguide with a permeable triangular billiard at its ending.
The conclusion is drawn in section 5.
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2. A brief summary of the BWM

The BWM construction has been fully developed in [12, 15]. So, here we just outline the
main ideas and the most relevant results without going into much details. We assume the
Helmholtz equation in V ∈ R

N , with appropriate BCs at CV , see figure 1. In the case of
CV tending to infinity, we have the actual free whole space and the BCs would correspond
either to the outgoing (+) or to the incoming (−) radiation condition. In the (empty) V
region, the incident (or initial or ‘seed’ [15]) wave function φk(r) satisfies (∇2 + k2)φk(r) = 0,
whereas the ‘free’ (0) Green’s function is given by (∇2 + k2)G0(r, r0; k) = δ(r − r0). For rel-
evant literature on general aspects of Green’s functions we can cite, for example, references
[29–32]. The desired BCs at CV must be imposed to both φk(r) and G0(r, r0; k). Here k2 = E
(with h̄2/(2μ) = 1).

Now, for U a compact support potential within the region V , the scattering wave solu-
tion ψk(r) for the problem is given by the Lippmann–Schwinger equation ψk(r) = φk(r) +∫

V dr0G0(r, r0; k)U(r0)ψk(r0). The BWM essential idea [12] is then to write U(r) as the δ-wall
potential U(r) =

∫
C dsγ(s)δ(r − r(s)), where s parameterizes all the points along the sharp-

walled curve C, with r(s) being their vector positions. Here γ(s) gives the permeability (or
leakage) of C at each point s. Actually, if one assumes a plane wave of wavenumber k, incident
perpendicular to the point s on C, then it has the probability Pt = 4k2/(4k2 + γ(s)2) to be trans-
mitted through and Pr = γ(s)2/(4k2 + γ(s)2) to be reflected from s. In the limit γ →∞ (so that
Pt = 0) one can show that ψk does vanish on C [12], corresponding to the usual Dirichlet BC.
Other BCs, like Neumann, mixing and Robin, are also possible by setting other δ-like expres-
sions [33] for U (the reader is referred to [12], in particular its appendix B, for a throughout
discussion). In this work we concentrate only in uniformly permeable, thus with γ a constant
along the whole C, and Dirichlet BCs.

By inserting the above U into the Lippmann–Schwinger equation one gets (r ∈ V)

ψk(r) = φk(r) + γ

∫
C
dsG0(r, r(s); k)ψk(r(s)). (1)

In a close relation with the standard T-matrix in formal scattering theory [14], one can define
ψk(r(s′′)) =

∫
Cds′Tγ(s′′, s′; k)φk(r(s′)), such that

ψk(r) = φk(r) + γ

∫
C

∫
C
ds′′ ds′G0(r, r(s′′); k)Tγ(s′′, s′; k)φk(r(s′)). (2)

A series representation for Tγ yields [15]

Tγ(s′′, s′; k) = δ(s′′ − s′) +
∞∑
j=1

T ( j)
γ (s′′, s′; k), (3)

where

T ( j)
γ (s′′, s′; k) = γ j

∫
ds1 ds2 . . . ds j−1G0(r(s′′), r(s j−1); k)

× G0(r(s j−1), r(s j−2); k) . . .G0(r(s1), r(s′); k). (4)

For the particular case of γ →∞ we can proceed as the following. By defining T(s′′, s′; k) =
−limγ→∞γ Tγ(s′′, s′; k), it reads [18]

4
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δ(s′′ − s′) =
∫
C
dsT(s′′, s; k)G0(r(s), r(s′); k)

=

∫
C
dsG0(r(s′′), r(s); k)T(s, s′; k), (5)

and for any r ∈ V

ψk(r) = φk(r) −
∫
C

∫
C
ds′′ ds′G0(r, r(s′′); k)T(s′′, s′; k)φk(r(s′)). (6)

For r in ψk(r) taken as a vector position r(s) of an arbitrary s on C, from equation (5) into
equation (6) we find that ψk(r(s)) identically vanishes, thus satisfying the Dirichlet BC as
previously anticipated.

A first remarkable property of the BWM for a closed C, a billiard, is the so called filter
mechanism [15]. Assume {kn,Ψn} the set of eigensolutions of the interior of C. Such mech-
anism guarantees that for any r in the inner region: (i) if k �= kn, then the method naturally
gives ψk(r) = 0 (although in the outside region ψk is the correct scattering solution, with φk

corresponding to the incident wave); (ii) if k = kn for some n and for φk displaying proper
symmetry conditions (see [15]), we have ψk(r) = Ψn(r).

A second, very handy, feature of the BWM is that to find the set of kn’s of a billiard one does
not need to calculate the ψk’s. As described in [12, 18], for k approaching a kn, T(k) starts to
present very special characteristics, easily identifying a resonant k, i.e., an eigenwavenumber.
Thus, varying k in T(k) is the common procedure to determine the spectrum of a billiard through
the BWM.

As already pointed out in the introduction, the BWM numerical formulation is relatively
simple and well discussed in the literature (for instance, a step by step recipe with the nec-
essary explicit formulas are given in [15]). In a nutshell, one discretizes C so the function T
becomes a square matrix, computed from a matrix version of equation (5) (or from its finite γ
version, cf, equation (9) in [12]). Then, equation (2) or equation (6) can be solved by means
of direct quadratures. Fundamental for our purposes is that such scheme is independent on the
actual functional form of G0, unless of course for the particularities of its numerical calcula-
tion. Therefore, for distinct G0’s the same existing numerical algorithms for the BWM can be
used without appreciable modifications.

2.1. The choice of the spatial domain V

It may be the case one shall address specific undulatory behavior associated uniquely to the
shape C and for which the embedding V in principle should not be relevant. For example, the
inside eigenstates for C a billiard or the outside scattering features in the close proximity of an
arbitrary C [34–36]. Hence, provided V is consistent with the investigated phenomenon, there
is great flexibility in its choice for the BWM.

This motivates to look for domain geometries facilitating the analysis. Just as an illustra-
tion, suppose one wishes to discuss a process like the scattering resonances of two impenetrable
disks in the plane [37, 38] (modeled as circles with Dirichlet BCs). Using the BWM, one pos-
sible strategy could be to consider the Green’s function for the 2D free space—G(+)

0 (r, r0; k) =
− i

4 H(+)
0 (k|r − r0|)—and then take C as the two circles. Nonetheless, apart from the numerical

handling of G0, the necessary numerical work (to obtain T and to perform the integrals for ψk)
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in this first approach would be reduced if instead, we assume as G0 the Green’s function for
the exterior region of a circle in 2D4 and thus C only as the second circle.

A key point mentioned above regards the compatibility between the sought solutions ψk

with the domain V . Such aspect of the BWM is easy to comprehend supposing C a closed
curve, like C1 in figure 1. Consider we are trying to determine the eigenstates and eigenval-
ues of C. If V is also limited (e.g., figure 1), the possible k’s from the ‘seed’ states φk (see
the method description) are those belonging to the spectrum of the Helmholtz equation on V ,
{kn}V . Therefore, using the BWM we cannot obtain the solutions for a billiard C within an also
closed V if {kn}C and {kn}V are distinct. To avoid the problem, one should set V as an open
region, moreover displaying symmetries conforming with those of C.

However, bearing the above in mind, proper selections of V’s could broaden the applica-
bility of the BWM. For instance, allowing to treat much longer C’s, reducing the necessary
computational efforts to solve closed shapes, and even to open the possibility of analytical
results—presently limited to very few cases once the practice in the literature is to set V = R

N .
So, among potential candidates for V’s we mention semi-infinite or infinite waveguide-like
geometries. Generally speaking, they are finite in all directions but one, along which extending
over R+ or R.

In the next section we describe a general method to obtain the exact Green’s function for
a certain class of semi-infinite waveguides, which are very suitable for the BWM. We further
solve a particular example, a rectangular shape. Section 4 is then dedicated to explore such
particular domain.

3. The Green’s function for semi-infinite waveguides

Next we address the outgoing (+) and incoming (−) Green’s function G(±) for the Helmholtz
operator L̂V

k ≡ ∇2
r + k2 defined on V ∈ R

N [31]. We concentrate only on Dirichlet BCs at the
frontiers CV of V . The procedure next is aimed to a particular type of semi-infinite waveguide
structure, for which V = (0,∞) × Ω, with Ω a limited (finite) region of RN−1. Owed to the
specific geometry of V , we can assume there exists a coordinate system allowing to write
(0 < ξ < ∞, η = (η1, η2, . . . , ηN−1), an < ηn < bn for an < bn finites ∀n, and r = (ξ,η))

L̂V
k G(ξ,η; ξ0,η0; k) =

(
Ôξ + f (ξ)∇2

η + k2
)

G(ξ,η; ξ0,η0; k) = δ(r − r0)

= s(ξ)δ(ξ − ξ0)δ(η − η0), (7)

where Ôξ = f2(ξ)∂2/∂ξ2 + f1(ξ)∂/∂ξ + f0(ξ) [29, 30]. Note that Ôξ should be related to
wave-like solutions since it is somehow the component of the Helmholtz equation along the
semi-infinite direction ξ.

We have G(ξ,η ∈ CΩ; ξ0,η0; k) = 0 and depending on each particular CV , a specific con-
dition for G(0,η; ξ0,η0; k) must also be observed (see the explicit example in the following).
Moreover, given that L̂k is a second order differential operator, G is continuous at r = r0, but
across r0 displaying finite jumps in its first derivatives which yield a delta function-like diver-
gence for the second derivatives (see, e.g., [39]). We seek± solutions (with + corresponding to

4 The exact outgoing Green’s function for the exterior of a circle of radius R centered at the origin
and satisfying Dirichlet BCs reads G(+)

0 (r, r0; k) = − i
4 H(+)

0 (k|r − r0|) + i
4

J0(kR)

H(+)
0 (kR)

H(+)
0 (kr)H(+)

0 (kr0) +
i
2

∑∞
n=1

Jn(kR)

H(+)
n (kR)

H(+)
n (kr)H(+)

n (kr0) cos[n(θ − θ0)], where Jn and H(+)
n are the Bessel and first kind Hankel func-

tions of order n. Maybe surprisingly, the infinite series can be numerically computed with the help of asymptotic
expansions in the order parameter n (see, e.g., reference [15]).
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the Sommerfeld radiation condition), so G(±)(ξ →∞) ∼ (1/
√
ξ(N−1)d) exp[±ikξ] for d related

to the degree of separability of ξ and η (e.g., if f (ξ) = 1 then d = 0) [30].
For the limited region Ω, the Helmholtz operator L̂Ω

k̃
= ∇2

η + k̃2 represents an eigenvalue
problem, such that [40] (with n = 1, 2, . . . , labeling the distinct eigenmodes)(

∇2
η + k2

n

)
wn(η) = 0,

wn(η ∈ CΩ) = 0,∫
Ω

dηwn2 (η)w∗
n1

(η) = δn2n1 ,

∑
n

wn(η2)w∗
n(η1) = δ(η2 − η1), (8)

with the last identity above representing the completeness relation of the wn’s in Ω [40].
Due to the form of L̂V

k in equations (7) and (8), it is natural to write

G(ξ,η; ξ0,η0; k) =
∑

n

wn(η)w∗
n(η0)Fn(ξ; ξ0; k), (9)

demanding that for any n(
Ôξ − f (ξ)k2

n + k2
)

Fn(ξ; ξ0; k) = s(ξ)δ(ξ − ξ0). (10)

When ξ �= ξ0 (so δ(ξ − ξ0) = 0), the resulting homogeneous second order differential

equation—
(
Ôξ − f (ξ)k2

n + k2
)
Fn(ξ; k) = 0—does admit two fundamental (stationary wave)

solutions [29, 40], Fn = un(ξ; k) and Fn = vn(ξ; k). In principle, correct linear combinations of
these functions—say, h(±)

n (ξ; k) = αnun(ξ; k) ± iβnvn(ξ; k)—should asymptotically represent
proper outgoing and incoming waves.

In this way, assuming that un(ξ; k) leads to the desired condition for G(±) at ξ = 0, we can
take F(±)

n ∝ un(ξ; k) for ξ < ξ0 and F(±)
n ∝ h(±)

n (ξ; k) for ξ > ξ0. Then, it is straightforward to
realize that a continuous F at ξ = ξ0, but presenting a ‘leap’ in its first derivative, reads (for
C(±)

n a constant and ξ> (ξ<) the larger (smaller) between ξ and ξ0)

F(±)
n (ξ; ξ0; k) = C(±)

n un(ξ<; k)h(±)
n (ξ>; k). (11)

The last step is to determine C(±)
n in order to comply with equation (10). With this aim, we

divide equation (10) by f2(ξ), integrate the resulting expression in ξ from ξ0 − ε to ξ0 + ε
and take the limit ε→ 0. By using the fact that F is continuous and employing integration by
parts for the term of Ôξ involving ∂/∂ξ, we get (with z′(ξ) ≡ dz(ξ)/dξ and W[z2(ξ), z1(ξ)] ≡
z′2(ξ)z1(ξ) − z2(ξ)z′1(ξ) the Wronskian of z2(ξ) and z1(ξ))

C(±)
n =

s(ξ0)
f2(ξ0)

1

W[h(±)
n (ξ0; ξ0; k), un(ξ0; ξ0; k)]

. (12)

Finally, we observe that from the above the BCs for G are also observed in the variables r0, as
it should be because the symmetry r ↔ r0 in the Green’s function equation [31, 39].

3.1. The rectangular semi-infinite waveguide

To illustrate the previous prescription, we consider the geometry depicted in figure 2(a). It
corresponds to a rectangular semi-infinite waveguide region 0 < y < Ly, x > 0, for which

7
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Figure 2. (a) The domain V of a rectangular semi-infinite waveguide in 2D. (b) The
straight line C together with parts of the walls of V can form distinct billiard shapes, like
a rectangular trapezium, a rectangle (if θ = π/2), and a right triangle if Lx is properly
set (top right corner detail).

we impose Dirichlet BCs at y = 0, y = Ly and x = 0. So we can use Cartesian coordinates,
with ∇2

r = ∂2/∂x2 + ∂2/∂y2 and δ(r − r0) = δ(x − x0)δ(y − y0). Also, G(0, y; x0; y0; k) =
G(x, 0; x0; y0; k) = G(x, Ly; x0; y0; k) = 0. For the limited direction y (n = 1, 2, . . .)

ϕ
(Ly)
n (y) =

√
2
Ly

sin

[
nπy
Ly

]
,

d2

dy2
ϕ

(Ly)
n (y) +

n2π2

L2
y
ϕ

(Ly)
n (y) = 0, (13)

where ϕ
(Ly)
n (0) = ϕ

(Ly)
n (Ly) = 0. In this case the solutions for the homogeneous version

of equation (10) are sin[knx], cos[knx], and exp[±iknx], with k2
n = k2 − n2π2/L2

y . Hence,
to observe the boundary condition at x = 0 we set un(x) = sin[knx] (obviously h(±)

n (x) =
exp[±iknx]). Lastly, W[ exp[±iknx0], sin[knx0]] = −kn and therefore the exact Green function
for the rectangular semi-infinite waveguide reads

G(±)
rwg(x, y; x0, y0; k) =

∞∑
n=1

ϕ
(Ly)
n (y)ϕ

(Ly)
n (y0)

(−1)
kn

sin[knx<] exp[±iknx>], (14)

where kn =
√

k2 − n2π2/L2
y , ϕ

(Ly)
n (z) =

√
2/Ly sin[nπz/Ly] and x> (x<) is the greater

(smaller) between x and x0. The superscript +(−) means the outgoing (incoming) case.
As a very instructive exercise, in the appendix A we show how to obtain the usual Green’s

function for a 2D box from the present G(±)
rwg solutions.

4. Applications for the domain V as the rectangular semi-infinite waveguide

Let us suppose a segment of line C within the region V , figure 2(b), whose parametric equation
is (for 0 � t � 1)

x(t) = Lx +
Ly

tan[θ]
t, y(t) = Lyt. (15)

Note that here t plays the same role than s in section 2.

8
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Such single C, when considered together with parts of the V border, form some simple
polygonal billiards. Indeed, for an arbitrary Lx , C leads—with the waveguide walls—to a rect-
angular trapezoidal shape, whereas by setting Lx = −Ly/tan[θ], we have a right triangle (as
illustrated in the inset of figure 2(b)). Finally, a rectangular structure emerges when θ = π/2,
so that tan[θ] →∞ and then x(t) = Lx and y(t) = Lyt.

In section 4.2 we numerically calculate ψk(r) for the systems of figure 2(b), assuming dis-
tinct permeabilities γ and geometric parameters Lx and θ for C. But prior to that, we present
next some analytically solvable examples.

4.1. Analytical results for C with θ = π/2

4.1.1. The T and Tγ matrices. We set θ = π/2 and assume Dirichlet BCs on C. The expression
for the T matrix, second relation in equation (5), with G0 given by G(±)

rwg in equation (14), yields
(for 0 � tb, ta � 1)

δ(tb − ta) =
∫ 1

0
dt

∞∑
n=1

ϕn(Lytb)ϕn(Lyt)
(−1)

kn
sin[knLx] exp[±iknLx] T (±)(t, ta; k).

(16)

Above we have dropped the superscript (Ly) in ϕ for notation simplicity. Recalling that∫ 1

0
dtϕn(Lyt)ϕm(Lyt) =

1
Ly

δnm,

∞∑
n=1

ϕn(Lytb)ϕn(Lyta) =
1
Ly

δ(tb − ta), (17)

then by a direct inspection of equation (16) we find

T (±)(tb, ta; k) = −L2
y

∞∑
n=1

ϕn(Lytb)ϕn(Lyta)
kn exp[∓iknLx]

sin[knLx]
. (18)

For the more general case of a permeable C, of permeability constant γ, we also can obtain
T (±)
γ in an exact closed form. Indeed, in the present case of θ = π/2 we have for the Equation (4)

T (±, j)
γ (tb, ta; k) = γ j

∫
dt1 dt2 . . . dt j−1

∑
n jn j−1...n2n1

(−1) j

kn jkn j−1 . . . k1

× ϕn j(Lytb)ϕn j(Lyt j−1)ϕn j−1 (Lyt j−1)ϕn j−1 (Lyt j−2)

× ϕn j−2 (Lyt j−2)ϕn j−2 (Lyt j−3) . . . ϕn3 (Lyt3)ϕn3 (Lyt2)

× ϕn2 (Lyt2)ϕn2 (Lyt1)ϕn1 (Lyt1)ϕn1 (Lyta)

×
l= j∏
l=1

sin[knlLx] exp[±iknlLx]. (19)

Taking into account the first relation in equation (17) for the successive integrals in
equation (19), we get

T (±, j)
γ (tb, ta; k) =

∞∑
n=1

Ly

(
−γ

sin[knLx] exp[±iknLx]
Lykn

) j

× ϕn(Lytb)ϕn(Lyta). (20)

9
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Lastly, rewritten the δ function in equation (3) in terms of the second relation in equation (17),
we find for T (±)

γ

T (±)
γ (tb, ta; k) = Ly

∞∑
n=1

∞∑
j=0

(
−γ

sin[knLx] exp[±iknLx]
Lykn

) j

ϕn(Lytb)ϕn(Lyta)

=
∞∑

n=1

L2
yknϕn(Lytb)ϕn(Lyta)

Lykn + γ sin[knLx] exp[±iknLx]
. (21)

Observe that as discussed in section 2, we readily obtain T in equation (18) from Tγ in
equation (21) as T = −limγ→∞ γ × Tγ .

4.1.2. The solutionψk for the Dirichlet BC. A functionφk(r) which solves the free semi-infinite
waveguide (i.e., in the absence of C) is given by

φk(r) = Cl sin[lπy/Ly] sin[klx], (22)

where l is a positive integer, k2 = k2
l + l2π2/L2

y and Cl is a proper normalization constant.
To calculate ψk satisfying Dirichlet BCs on C we consider equation (6) with T from

equation (18). We have two cases, the internal (x < Lx) and external (x > Lx) regions. For
the first (r = (x < Lx , y))

ψk(r) = Cl sin

[
lπy
Ly

]
sin[klx] −

{
Cl

∞∑
n,m=1

sin

[
nπy
Ly

]
sin[knx]

km exp[±i(kn − km)Lx]
kn sin[kmLx]

L2
y

×
∫ 1

0

∫ 1

0
dtb dtaϕn(Lytb)ϕm(Lytb)ϕm(Lyta)ϕl(Lyta)

}
sin[klLx]

= Cl sin

[
lπy
Ly

]
sin[klx] −

{
Cl

∞∑
n,m=1

sin

[
nπy
Ly

]
sin[knx]

× km exp[±i(kn − km)Lx]
kn sin[kmLx]

δnmδml

}
sin[klLx]. (23)

Here the filter mechanism mentioned in the section 2 becomes manifest. Suppose a wavenum-
ber k such that klLx = jπ for some j = 1, 2, . . . (therefore k2 = π2 (l2/L2

y + j,2/L2
x)). Thus

sin[klLx] = 0, the second term in the rhs of the last relation in equation (23) vanishes and

ψk(r) = Cl sin[lπy/Ly] sin[ jπx/Lx] = φk(r), (24)

which is the exact eigenstate for a 2D rectangular box. On the other hand, if kl �= jπ/Lx

( j integer) equation (23) yields

ψk(r) = Cl sin

[
lπy
Ly

]
sin[klx] − Cl sin

[
lπy
Ly

]
sin[klx] = 0, (25)

the correct trivial null solution since k does not correspond to an eigenwavenumber for the
inside problem.

10
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For the outside region

ψk(r) = Cl sin

[
lπy
Ly

]
sin[klx] −

{
Cl

∞∑
n,m=1

sin

[
nπy
Ly

]
exp[±iknx]

km sin[knLx]
kn sin[kmLx]

exp[∓ikmLx]L2
y

×
∫ 1

0

∫ 1

0
dtb dtaϕn(Lytb)ϕm(Lytb)ϕm(Lyta)ϕl(Lyta)

}
sin[klLx]

= Cl sin

[
lπy
Ly

]
sin[klx] −

{
Cl

∞∑
n,m=1

sin

[
nπy
Ly

]
exp[±iknx]

× km sin[knLx]
kn sin[kmLx]

exp[∓ikmLx]δnmδml

}
sin[klLx]. (26)

Notice that if again we choose kl such that sin[klLx] = 0, the above outside ψk(r) displays the
same exact functional form of the inside ψk(r), equation (24). This is a nice example of the
transparency principle (TP) for billiards [41, 42, 43], taking place whenever there is a perfect
symmetry matching of the inner eigenstates with the exterior scattering solutions. In the present
example the TP is heuristically easy to understand. The vertical C is an infinitely repulsive δ-
wall barrier within the waveguide (located at x = Lx). However, it has zero width and since the
incident wave vanishes exactly at x = Lx , then φk does not ‘feel’ such barrier potential. Hence,
it is like the solution in equation (24) would extend everywhere in the semi-infinite rectangular
waveguide, in agreement with equation (26).

Finally, when sin[klLx] �= 0 we have from equation (26)

ψk(r) = Cl sin

[
lπy
Ly

]
(sin[klx] − exp[±ikl(x − Lx)] sin[klLx])

= D(±)
l sin

[
lπy
Ly

]
sin[kl(x − Lx)], (27)

which is the expected steady solution for the semi-infinite waveguide, just with the closed end
moved from x = 0 to x = Lx (D(±)

l is simply a redefined normalization constant).

4.1.3. The solution ψk for a permeable C. Now, for ψk we consider equation (2) with Tγ from
equation (21). For φk we assume equation (22). For the internal (x < Lx) region

ψk(r) = Cl sin

[
lπy
Ly

]
sin[klx] − γCl

×
{ ∞∑

n,m=1

sin

[
nπy
Ly

]
sin[knx]

(km/kn) exp[±iknLx]L2
y

kmLy + γ sin[kmLx] exp[±ikmLx]

×
∫ 1

0

∫ 1

0
dtb dtaϕn(Lytb)ϕm(Lytb)ϕm(Lyta)ϕl(Lyta)

}
sin[klLx]

= Cl sin

[
lπy
Ly

]
sin[klx] −

{
γCl

∞∑
n,m=1

sin

[
nπy
Ly

]
sin[knx]

× (km/kn) exp[±iknLx]
kmLy + γ sin[kmLx] exp[±ikmLx]

δnmδml

}
sin[klLx], (28)

11
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whereas for the external (x > Lx) region

ψk(r) = Cl sin

[
lπy
Ly

]
sin[klx] − γCl

×
{ ∞∑

n,m=1

sin

[
nπy
Ly

]
exp[±iknx]

(km/kn) sin[knLx]L2
y

kmLy + γ sin[kmLx] exp[±ikmLx]

×
∫ 1

0

∫ 1

0
dtb dtaϕn(Lytb)ϕm(Lytb)ϕm(Lyta)ϕl(Lyta)

}
sin[klLx]

= Cl sin

[
lπy
Ly

]
sin[klx] −

{
γCl

∞∑
n,m=1

sin

[
nπy
Ly

]
exp[±iknx]

× (km/kn) sin[knLx]
kmLy + γ sin[kmLx] exp[±ikmLx]

δnmδml

}
sin[klLx]. (29)

If k is such that klLx = jπ ( j = 1, 2, . . .) then sin[klLx] = 0 and either from equation (28) or
from equation (29) we find that ψk(r) = φk(r) regardless the permeability parameter γ. This
again is due to the TP (see the discussion after equation (26)).

For sin[klLx] �= 0, we have for x < Lx

ψk(r) = A(kl; γ)φk(r) = A(kl; γ)Cl sin

[
lπy
Ly

]
sin[klx] (30)

and for x > Lx

ψk(r) = A(kl; γ)Cl sin

[
lπy
Ly

]{
sin[klx] +

γ sin[klLx]
klLx

sin[kl(x − Lx)]

}
, (31)

where

A(kl; γ) =
klLx

klLx + γ sin[klLx] exp[±iklLx]
. (32)

As it should be ψk(r) is continuous at x = Lx.
An interesting consequence of the above geometrical configuration is the emergence of

quasi-bound states associated to the one-sided leaking (C) rectangular structure placed at the
closed end of the semi-infinite waveguide. Actually, there are different procedures [44, 45]
to generate resonances in cavities and closed waveguides [18]. For instance, one goal is try
to enhance the intensity of the resulting stationary electromagnetic modes [44]. Although far
from being a practical realization, our present setup might constitute a workable idea towards
such aim. Indeed, for x < Lx (equation (30)) the presence of C leads to an amplitude factor
A(kl; γ) (equation (32)) for the waveguide natural eigenstate φk. By rewriting γ in terms of the
probability transmission Pt and kl (see section 2), and for the incident wavelength λl = 2π/kl,
we plot in figure 3 |A|2 as function of λl/Lx for four values of Pt, assuming the first l = 1
mode in the y direction. For each Pt, clearly there are values of λl/Lx for which |A|2 is much
higher than the reference unit amplitude, characterizing a great gain inside the waveguide. This
phenomenon is considerably more pronounced for lower transmissivity through C. But then,
as expected the quasi-state resonances widths become much narrower.
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Figure 3. The modulus square of A, equation (32), as function of λl/Lx (with λl the
incident wavelength along x) for four distinct values of the probability transmission Pt

across C. Here l = 1 and Lx = 1. The peaks represent quasi-bound states resonances
associated to the rectangular one side leaking structure, when the wave amplitude greatly
increases. The inset in (a) illustrates that for Pt > 0, |A|2 does not completely vanish for
any value of λl/Lx if Pt > 0. The inset in (b) exemplifies a general trend, the resonances
tend to disappear for λl/Lx of the order of few units. In (b) no important peaks are
observed for λl/Lx > 2.7.

4.2. Numerical examples for distinct C’s

Lastly we present few representative numerical examples. The aim is not to address extremely
accurate simulational results or very detailed analysis for the shapes discussed. Instead, we
shall illustrate the suitability and usefulness of the proposed BWM construction. A compre-
hensive study of potential applications for the BWM exploring the geometry of semi-infinite
waveguides should be the subjected of a forthcoming, computationally-oriented, work.

We assume certain values for θ and Lx such that C together with appropriate parts of the rect-
angular waveguide borders form distinct structures, see figure 2(b). We recall that the division
of C into N ‘pieces’ and the numerical calculation of T and Tγ—which upon such discretiza-
tion become N × N matrices [18]—follow the exact same scheme outlined in [15]. The only
difference is to substitute the 2D free space Green’s function in section 2 by G(+)

rwg,5 with
∑

n(·)
in equation (14) truncated at n = N∗ (see below). The states ψk, equation (2), are then obtained
by usual numerical integration.

As in any boundary-like method [8, 9], for adequate convergence the previously mentioned
N partitioning of C must take into account the range of λ = 2π/k. We use the parameterization
N = ζPC/λ, where PC is the curve C perimeter. From some direct tests we have determined that
ζ = 30–40 (ζ = 14–20) represents a proper compromise between inexpensive simulations and
fair numerical precision when k < 20 (k ∼ 100). Note that by fair here one should have clear
the type of application, therefore the necessary accuracy for the sought results.

In particular, concerning eigenvalues of closed C’s with Dirichlet BCs (billiards), to com-
pare the present BWM formulation with others methods, say, in terms of ζ, one must bear
in mind that the present discretization takes place only for a part of the structure frontiers,

5 To determine the inside billiards eigenstates one can use either the (+) or the (−) Green’s function. But to treat C as
a scatter for the outside waveguide states, the outgoing (+) is a better choice.
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Figure 4. Density plots of the numerically calculated |ψk(r)|2 for θ = 3π/4 and Lx = Ly

(first) and Lx = 2Ly (second) columns, with Ly =
√

2. Such parameters result, respec-
tively, in 45◦–45◦ right triangle and square −45◦trapezium shapes (cf, figure 2). The
k’s in (a) and (g) do not correspond to eigenwavenumbers, so the BWM leads to null
solutions within the billiard region. The plots (b)–(d) and (h)–(j) display only the inside
eigenfunctions—the outside waveguide states are deliberated omitted for a better visu-
alization. In (e), (f), (k) and (l), both the billiard eigenstates and the outside scattered
φk’s are shown (for these four examples Nk = 45 in equation (33), but the φk’s are not
the same because the small difference between the k’s). The specific k’s are: (a) 6.5000,
(b) 7.0279, (c) 11.3321, (d) 17.3577, (e) 100.6681, (f) 100.8641, (g) 6.5000, (h) 7.0259,
(i) 10.2191, ( j) 14.4870, (k) 100.3652, (l) 100.0923. The |ψk(r)|2 for the right triangles
in practice perfectly reproduce the corresponding exact solutions in equation (34), with
the quantum numbers given in table 1.

whereas in different approaches, the discretization is done along the entire billiard borders.
Then, a practical way to contrast protocols—of course, for same typical spatial sizes (e.g., bil-
liard area) and k ranges—is to verify the numerical precision given the N’s used. For example,
for the very effective extended boundary integral method proposed in [46], for k ∼ 70 the
authors use ζ = 12, a similar discretization procedure to ours, but for a Monza billiard of area
around 7. The goal there is to resolve doublets, quasi-degenerate states, and thus the numerical
precision needed (and indeed obtained) is much higher than ours for equal N’s. It is also worth
mentioning the very powerful approach developed in [47]. By means of scaling considerations,
one can obtain highly excited states of billiards in a narrow energy range with impressive very
small error. In fact, such technique has been considered to calculate the spectrum of chaotic
triangular billiards [48] with the number of levels in the order of 106.

The BWM for waveguides, when employed to compute billiards eigenstates, does not dis-
play such a great numerical efficiency. Nonetheless, ours should not be viewed as a competing
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Table 1. For all the right triangle billiard eigenstates in figure 4, the numerical k and the
exact kpq, whose percentage difference is given by Δk%. The sizes of the discretized T
matrices for the present (N ) and for the free space (Nfree) BWM formulations are also
given. For each example, the listed N and Nfree lead to the same numerical precision.
The percentage difference Δksup% (Δkinf%) between kpq and the exact eigenwavenum-
ber mode just above (below) kpq is also shown. Contrasting Δk% with Δkinf/sup%, it
becomes clear that the method properly resolves the individual levels.

Figure 4 kpq(p, q) (Δkinf%) and (Δksup%) k (Δk%) N Nfree

(b) 07.0248 (1, 3) (41.42%) and (12.29%) 07.0279 (0.04%) 224 601
(c) 11.3272 (1, 5) (1.98%) and (5.31%) 11.3321 (0.04%) 219 669
(d) 17.3500 (5, 6) (2.55%) and (3.12%) 17.3577 (0.04%) 218 666
(e) 100.6536 (17, 42) (0.07%) and (0.07%) 100.6681 (0.01%) 680 1933
(f) 100.8495 (6, 45) (0.10%) and (0.12%) 100.8641 (0.01%) 680 1939

protocol to those in [46, 47]. Indeed, as expected different methods tend to be more fitted to
distinct purposes. The mentioned procedures are ideal to determine large number of levels
with high accuracy. On the other hand, both the traditional and the present BWM may be more
appropriate, e.g., to investigate the spectrum features of families of shapes [49], billiards with
leaking borders and small structures coupled to waveguides [18].

Regarding the truncation of G(+)
rwg, as a rule of thumb we have found that for a given k we

can set N∗ = Nk + 2N, with Nk the largest integer for which k2 − N2
kπ

2/L2
y is real. Hence, in

the numerics we should consider 2N evanescent modes [41] for the rectangular semi-infinite
waveguide Green’s function. We further observe that the sum in equation (14) runs over simple
trigonometric and exponential functions, so very easy to deal with computationally. Moreover,
owned to the particular dependence of the Green’s function on k—associated only to the x
coordinate in the term sin[knx<]exp[±iknx>], see equation (14)—the fact that G(+)

rect is written
as a series expansion could be strongly mitigated through well-established meshing and vec-
torization techniques [50]. However, for the examples next such type of algorithm optimization
is not indeed required.

To facilitate finding the billiard systems eigenstates, it is appropriate to choose a ‘seed’ state
φk [12] with a large number of modes in the y direction [25]. Thus, we assume the following
steady state for the waveguide in the absence of C

φk(r) = C
Nk∑

l=1

sin[lπy/Ly] sin
[√

(k2 − l2π2/L2
y)x

]
. (33)

For convenience, we set the normalization constant C to 1. In all which follows we specify the
geometric parameters and k values and then display density plots of the corresponding |ψk|2,
with ψk given by equation (2). Brighter (darker) regions indicate a higher (smaller) wavefunc-
tion amplitude. The simulations have been performed with a homemade Fortran code and the
pictures drawn using the software Mathematica.

In figure 4 we have θ = 3π/4 and Lx = Ly in the first column and Lx = 2Ly in the second
column with, both with Ly =

√
2. Thus, the corresponding billiards are the classically inte-

grable 45◦–45◦ right triangle of area 1, whose quantum solutions read [51] (for p �= q positive
integers)
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Figure 5. Density plots of the absolute square of some numerical eigenstates. From
(a) to (h) θ = 2π/3, Ly = 121/4 and Lx = (4/3)1/4 for the 60◦–30◦ right triangle
and Lx = 121/4 + (4/3)1/4 for the square −60◦ trapezium. From (i) to (p) θ = 5π/8,
Ly =

√
2 tan[3π/8] and Lx =

√
2/tan[3π/8] for the 67.5◦–22.5◦ right triangle and

Lx =
√

2 tan[3π/8] +
√

2/tan[3π/8] for the square −67.5◦ trapezium. The specific
k’s are: (a) 10.3182, (b) 15.2297, (c) 100.4155, (d) 100.5292, (e) 8.1563, (f) 15.2142,
(g) 100.4206, (h) 100.6029 (i) 13.3615, ( j) 15.9067, (k) 100.7009, (l) 100.8680, (m)
8.2714, (n) 13.1436, (o) 100.2544, (p) 100.0844.

ψpq(x, y) =
1
Ly

(
sin

[
pπx
Ly

]
sin

[
qπ(Ly − y)

Ly

]
− sin

[
qπx
Ly

]
sin

[
pπ(Ly − y)

Ly

])
(34)

and the classically quasi-integrable square −45◦ trapezium [52–54] of genus 2 [55] and area 3,
for which a fraction of the quantum eigenstates (those with a node along x = Ly) are also given
by equation (34), but with the substitution x → x + Ly and a distinct normalization constant. Of
course, outside the billiard we have a rectangular semi-infinite waveguide with a diagonal-wall
ending.

In table 1 we compare the numerical and analytical eigenwavenumbers for the right triangle
billiards of figure 4, plots (b)–(f). Using the above heuristics to set the size of the discretized
T matrices, we also show the corresponding N values. Note that the Δk%’s between the exact
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Figure 6. Density plots of the scattering solutions |ψk(r)|2 in the waveguide region for
k = 100.6320 and a right triangle with θ = π/2 + φ, Ly =

√
2 tan[φ], Lx =

√
2/tan[φ]

and (a) φ = 40◦, (b) φ = 43◦, (c) φ = 45◦, (d) φ = 47◦, (e) φ = 50◦.

and numerical k’s are very reasonable given the relatively small N’s and the elementary trun-
cation procedure for the Green’s function. Moreover, the numerical error Δk% is considerably
smaller than the separation between two successive neighbor levels (observe the third and
fourth columns in table 1). We also contrast the present N’s with those from the usual BWM
(i.e., using a 2D free space Green’s function and then C being the full billiard contour) yielding
a same numerical accuracy. At least concerning the necessary size of the T matrix, the waveg-
uide prescription is clearly an advantage. Finally, it may be the case that to resolve neighbor
levels in a certain k interval (say k ∼ 100), we need to consider larger N’s than those used
for other levels in this same interval. For instance, suppose the four successive exact eigen-
wavenumbers k17,42 = 100.6536 ((e) in table 1) <k30,34 = 100.7271 < k11,44 = 100.7516 <
k6,45 = 100.8495 ((f) in table 1). Note that Δ = k11,44 − k30,34 = 0.0245 ≈ δ/2.5 for the mean
level spacing [56] δ ≈ 2π/(kA) = 0.0622 (with A = 1 the billiard area and k set to 101). Hence,
in this specific situation we need to increase N (from 680 in table 1) to numerically determine
the close k30,34 and k11,44. Actually, for N = 1300 we find from the method ka = 100.7346 for
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Figure 7. Density plots of |ψk(r)|2 for the same 45◦–45◦ right triangle configuration of
figure 4, but for distinct permeabilities of C. The wavenumber value in the left (right)
column is k = 7.0279 (k = 6.5000), corresponding to the resonance (off-resonance)
example in figure 4(b) (figure 4(a)). The probabilities of transmission Pt through C (see
section 2) are: (a) and (g) 0 (same than in figure 4), (b) and (h) 0.01 (c) and (i) 0.1,
(d) and (j) 0.5, (e) and (k) 0.9, (f) and (l) 0.999.

k30,34 (so that k11,44 − k ≈ 0.017 and k − k30,34 ≈ 0.007) and kb = 100.7592 for k11,44 (so that
k6,45 − kb ≈ 0.090 and kb − k11,44 ≈ 0.008), thus sorting out these two levels.

Some trapezium eigenstates are depicted in figures 4(h)–(l). Since (h) displays a node along
x = Ly, as already mentioned it corresponds to a solution in the form of equation (34) with
x → x + Ly (hence extending to the whole trapezium billiard interior region). Indeed, it is not
difficult to realize that ψn in (h) is directly obtained from the triangle eigenstate in (b) by
a back folding through x = Ly and then a diagonal folding through x = y. Of course, they
should have exactly the same energy. The observed small difference between the k’s (see the
figure 4 caption) is due to the numerical approximation. By using in both cases N = 600, one
gets the much closer values (b) k = 7.0259 and (h) k = 7.0253. We also show in figures 4(e),
(f ), (k) and (l) how φk, equation (33), is scattered off by the wall C within the waveguide (refer
to equation (6)). Observe that the interference pattern difference of (e) and (f) to (k) and (l) is
related to the two distinct positions of C along the x axis (an effect we have checked by shifting
around C, but do not show here). The subtler but still noticeable distinction between (e) and (f)
and between (k) and (l) is due to the specific k values.

In figure 5 we display some extra numerically calculated eigenstates for right triangles (of
area 1) and square trapezium (of area 3) billiards. In the first, second, third and fourth columns
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we have, respectively, a 60◦–30◦ right triangle, a square −60◦ trapezium, a 67.5◦–22.5◦ right
triangle and a square −67.5◦ trapezium. For the specific geometric sizes see the caption of
figure 5. Only the 60◦–30◦ right triangle is classically integrable, the other three are quasi-
integrable (of genus 2, 2 and 4). This fact becomes qualitatively explicit in the plots. Indeed,
for the 60◦–30◦ right triangle billiard observe the very regular and symmetric morphologies
of the eigenstates—given as linear combination of a small number of simple sine functions,
see, e.g., reference [51]—therefore contrasting with the other examples, specially for higher k
values.

We have seen in figure 4 that the scattering patterns along the waveguide depends on the
exact location of C. Of course, they also must depend on the inclination θ of C. In figure 6 we
show the scattering solutions outside the right triangle billiard structure (for which we maintain
a fixed area of 1), considering five values for θ = π/2 + φ. In all cases k = 100.6320. We
clearly observe a qualitative change for |ψk(r)|2 as φ ranges from 40◦ to 50◦. Interestingly,
there is a very intense constructive interference spot in the superior waveguide wall, which
tends to move to the right as θ increases. So, C is acting as a kind of focalizing mirror for the
incident φk.

Finally, we give a numerical example of C a permeable wall barrier, characterized by a trans-
mission probability Pt, section 2. We consider the geometry and k values of figures 4(a) and (b),
with this latter k representing then a right triangle eigenwavenumber. The results for Pt equals
to 0, 0.01, 0.1, 0.5, 0.9 and 0.999 are shown, respectively, from rows 1 to 6 in figure 7. Obvi-
ously, for Pt = 0, the |ψk|2’s are the same than those in figures 4(a) and (b). As Pt increases,
resulting in a consequent greater leakage throughC, the intensity of the wavefunction inside the
right triangular structure becomes higher. For Pt = 0.999, practically the wall becomes trans-
parent and we have a continuous steady state solution along the whole rectangular waveguide
region.

5. Conclusion

The BWM is a generic protocol to solve boundary value problems for wave equations. But like
the majority of the approaches to deal with such classes of systems, some technical difficulties
may arise depending on the bordersC characteristics. An advantage of the BWM is that in many
instances one has a considerable freedom for choosing the method ‘free’ Green’s function G0.
We have then explored this key feature of the BWM and developed a formulation based on the
G0 for a semi-infinite waveguide.

We have considered the explicit case of a rectangular semi-infinite waveguide, which finds
interesting usages as discussed along the work. Indeed, we have illustrated certain trademarks
of our construction presenting distinct analytic and numeric examples, assuming structures like
rectangular, triangular and trapezoidal billiards, with Dirichlet and leaking BCs. We also have
discussed the scattering solutions in the interior of our rectangular semi-infinite waveguide.
Numerically, we have presented a very simple procedure to calculate G0 and the T matrix,
enough for simple utilizations. However, more elaborated algorithms would certainly improve
its computational effectiveness. In particular, to obtain the eigenvalues of closed billiards for
high k’s (for the shapes and typical spatial sizes addressed, meaning k greater than 100) the
procedure may become, numerically, less efficient. This is not a typical property of the BWM
[12, 15]. Most likely, such behavior might be associated to the necessity of including evanescent
modes in the G0 calculation, well known to be a trick factor to solve billiard problems [57,
58]—nonetheless inevitable for the waveguide here (see, e.g., reference [58]).
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We finally should emphasize that one is not restricted to a particular waveguide geometry.
Distinct waveguides potentially could increase the possibility of both analytical and numeri-
cal results for many other C’s and even improve the numerical accuracy for billiards (say, by
demanding smaller N’s). We hope our analysis can motivate further studies using the BWM in
connection with waveguides.
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Appendix A. The rectangular box Green function

For completeness we show how to obtain the Green function Gbox for a 2D box [40] from
G(±)

rwg. Recall that for Gbox, we must assume 0 < x < Lx and 0 < y < Ly, with Dirichlet
BCs at x = 0, Lx and y = 0, Ly and that G(±)

rwg already satisfy these conditions at x = 0 and
y = 0, Ly.

For x > x0, G(±)
rwg represents a particle propagating to the right (+) (left (−)) along x. Since

we are looking for a ‘stationary’ Green function, it is very reasonable to write Gbox as a linear
combination of these two G’s, but with necessary changes in the phases of each mode n com-
posing G(±)

rwg. To achieve this, we implement the rescaling F(±)
n → c(±)

n (kn; Lx)F(±)
n —therefore

not altering the action of the derivatives on Fn—in the expressions for G(±)
rwg (hereafter labeled

G(±)
rwg,c) and consider G(+)

rwg,c − G(−)
rwg,c. If for c(±)

n we take (i/2)exp[∓iknLx], it is direct to show
that the x> dependence of G(+)

rwg,c − G(−)
rwg,c becomes sin[kn(Lx − x>)], hence G(+)

rwg,c − G(−)
rwg,c is

null either for x = Lx or for x0 = Lx .
Nevertheless, from the previous procedures, we find that in this case (∇2 + k2)(G(+)

rwg,c −
G(−)

rwg,c) = sin[knLx]δ(x − x0)δ(y − y0). Finally, to eliminate such sine prefactor for the δ’s, we

just redefine c(±)
n = (i/2) exp[∓iknLx]/ sin[knLx]. Then, G box = G(+)

rect,c − G(−)
rect,c yields

Gbox =
∞∑

n=1

ϕ
(Ly)
n (y)ϕ

(Ly)
n (y0)

(−1)
kn sin[knLx]

sin[knx<] sin[kn(Lx − x>)]. (A.1)

It remains to prove that the above expression is actually the well known correct Green
function for a particle in a 2D box [39, 40]. For so, we follow a method devel-
oped in [59]. Since sin[u]sin[v] = (cos[u − v] − cos[u + v])/2 and from 1.445–6 in [60],
namely,

∑∞
m=1 cos[mz]/(m2 − α2) = 1/(2α2) − π cos[α(π − z)]/(2α sin[απ]), we can write

(by identifying α = knLx/π)
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− sin[knx<] sin[kn(Lx − x>)]
kn sin[knLx]

=
1

2kn sin[knLx]

(
cos[kn(Lx − |x − x0|)]

− cos[kn(Lx − (x + x0))])

=
1
Lx

∞∑
m=1

(k2
n − m2π2/L2

x)−1

×
(
cos[mπ(x − x0)/Lx]− cos[mπ(x + x0)/Lx]

)
=

2
Lx

∞∑
m=1

sin[mπx/Lx] sin[mπx0/Lx]
(k2 − n2π2/L2

y − m2π2/L2
x)

, (A.2)

such that

Gbox =
∞∑

n,m=1

ϕ
(Ly)
n (y)ϕ

(Ly)
n (y0)ϕ(Lx)

m (x)ϕ(Lx)
m (x0)

k2 − n2π2/L2
y − m2π2/L2

x
, (A.3)

which is the exact Green function for the mentioned problem as found, e.g., in [39, 40].
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