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 A B S T R A C T

The discrimination between order and chaos in dynamical systems remains a central problem 
in the field. Among the most widely used indicators are the Smaller Alignment Index (SALI), 
the Generalized Alignment Index (GALI), and the Linear Dependence Index (LDI), all of which 
exploit the evolution of deviation vectors to distinguish regular from chaotic motion. In this 
paper, we first show analytically, and confirm numerically, that the decay rates of LDI for 
chaotic orbits in both discrete- and continuous-time systems are the same with those of GALI 
reported in the literature. Our derivations, however, are more accessible, relying on the Singular 
Value Decomposition rather than the wedge-product formulation of GALI, which involves 
volumes of higher-dimensional parallelepipeds. We then derive the analytical expression for 
the decay rate of SALI in chaotic maps, demonstrating that it depends on the difference of 
the two largest Lyapunov exponents, as previously established for continuous-time systems. 
Crucially, we show analytically that the second Lyapunov exponent must always be considered, 
independent of its sign, in order to capture correctly the decay of SALI. This contrasts with 
existing results for continuous systems, where the second exponent is greater or equal than 
zero for chaotic orbits. Our analytical and numerical findings, therefore, extend the SALI decay 
rate formula to both continuous- and discrete-time systems. Finally, we confirm numerically 
that the decay rate of the SALI for chaotic maps is accurately described by our formula, which 
incorporates the two largest Lyapunov exponents, regardless of whether the second exponent 
is positive, zero, or negative.

1. Introduction

In his seminal work in 1963, Lorenz provided the first numerical evidence of deterministic chaos (or simply chaos) by 
demonstrating the existence of a strange attractor: an aperiodic, deterministic set that is highly sensitive to small changes in the 
initial conditions [1]. Since then, the detection and characterization of chaos in dynamical systems, along with the development of 
reliable theoretical and numerical methods, have become a central problem in modern research. A key tool in this context is the 
computation of the Lyapunov exponents (LEs) [2–5], which quantify the average exponential rates of divergence or convergence of 
nearby orbits in phase space. Lyapunov exponents provide the foundation for distinguishing between regular and chaotic dynamics: 
an orbit with at least one positive exponent is said to be chaotic.

However, the computation of all or a subset of LEs can be time-consuming and numerically demanding, particularly for high-
dimensional systems. This has motivated the introduction of several alternative chaos indicators, each with its own advantages. 
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Among those closely related to LEs are the fast Lyapunov indicator (FLI) [6–8], the relative Lyapunov indicator (RLI) [9,10], and 
the mean exponential growth factor of nearby orbits (MEGNO) [11,12]. These methods share the same conceptual basis as the 
traditional LE approach, but typically converge faster and require less computational effort. Additionally, other approaches have 
been developed based on time series analysis, such as the ‘‘0–1’’ test [13], the finite-time rotation number [14], the weighted Birkhoff 
average method [15–23], and various recurrence quantification techniques [24–31].

Among the most successful and rapidly converging modern methods are the Smaller Alignment Index (SALI) [32–34], its 
generalization, the Generalized Alignment Index (GALI) [35–39], and the Linear Dependence Index (LDI) [40]. These methods are 
based on the evolution of multiple deviation vectors along an orbit and exploit their tendency to collapse onto the most unstable 
directions in tangent spaces. SALI, which relies on only two deviation vectors, provides a fast distinction between regular and chaotic 
motion. GALI extends this idea to multiple vectors, providing a deeper understanding of the geometry of regular and chaotic motion. 
LDI, on the other hand, reformulates GALI using tools from linear algebra, focusing on the linear dependence of deviation vectors, 
exploiting the Singular Value Decomposition (SVD) method.

While these indices have successfully been applied to both continuous-time Hamiltonian and dissipative [41] systems, a 
systematic analysis of their decay rates, both analytically and numerically, has not been done in the case of chaotic discrete-
time systems, i.e., chaotic maps. Therefore, in this paper, we derive the decay rate of LDI for chaotic maps using the SVD of 
the matrix of deviation vectors. This linear-algebraic formulation provides a more direct and transparent route compared to the 
wedge-product interpretation used for GALI [35]. Through this approach, we show that the decay rate of LDI coincides with the 
decay rate previously reported for GALI. We then derive an analytical expression for the decay rate of SALI for chaotic maps and 
show it depends on the difference of the two largest Lyapunov exponents, as in the case of continuous-time systems reported in the 
literature [34,38]. However, our derivations show that the exponent of the decay rate of SALI is given by the difference of the first 
two LEs, regardless of whether the second LE is positive, zero, or negative. This is different to what is reported in the literature for 
continuous systems [34,38], where the second Lyapunov exponent can only be positive or zero for chaotic orbits [3,4,42], meaning 
that the exponent of the decay rate is given by the maximum LE if the second is zero. Thus, our analytical and numerical results 
generalize the decay rate formula of SALI for both continuous- and discrete-time chaotic systems.

The paper is organized as follows: In Section 2 we derive the analytical expression for the decay rate of LDI using the SVD method 
instead of the method in Ref. [35], and in Section 3, we validate these results for three- and ten-dimensional maps as well as for 
a Hamiltonian system. In Section 4, we revisit the analytical derivation of SALI and derive analytically a generalized expression 
for both discrete- and continuous-time systems, which we validate through numerical simulations on two paradigmatic maps: the 
Arnold’s cat map and the dissipative baker map. Section 5 contains our final remarks and thoughts. In the Appendix, we discuss the 
computation performance of the LDI 𝑘 indicator using the SVD procedure and compare with the Lyapunov exponents calculation.

2. Analytical derivation of the decay rates of the Linear Dependence Index for chaotic trajectories of discrete systems

Let 𝛷𝑛(𝐱0) be a discrete-time dynamical system in R𝑑 and 𝛷𝑛(𝐱0) be the 𝑛th iterate of the Jacobian matrix of the system. The 
Lyapunov spectrum 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑑 can be defined using Oseledec’s multiplicative theorem [43]. The theorem states that for 
almost every initial condition 𝐱0 ∈ R𝑑 , the following limit exists

𝑀(𝐱0) = lim
𝑛→∞

{

[

𝛷𝑛(𝐱0)
]𝑇𝛷𝑛(𝐱0)

}1∕2𝑛
,

and the LEs are related to the eigenvalues of the limiting matrix 𝑀 as

𝜆𝑖 = lim
𝑛→∞

1
𝑛
ln ‖
‖

𝛷𝑛(𝐱0)𝐰̂𝑖
‖

‖

,

where 𝐰̂𝑖 is the corresponding eigenvector of 𝑀 . A general deviation vector can then be expressed in the basis {𝐰̂𝑖} as 

𝐝(𝑛) =
𝑑
∑

𝑖=1
𝑐𝑖𝑒

𝜆𝑖𝑛𝐰̂𝑖. (1)

Let now 𝐴(𝑛) ∈ R𝑑×𝑘 be a matrix whose columns are 𝑘 ≤ 𝑑 linearly independent deviation vectors evolved in time, under the 
linearized dynamics, i.e., 

𝐴(𝑛) = 𝛷𝑛(𝐱0)𝐴(0), (2)

where 𝐴(0) ∈ R𝑑×𝑘 is the matrix of 𝑘 linearly independent initial deviation vectors. For chaotic orbits, as the number of iterations 
𝑛 increases, the matrix 𝐴 becomes dominated by the direction of maximal growth, i.e., all deviation vectors align with the most 
unstable direction, making it impossible to determine the smaller LEs. That is a classical issue in numerical simulations of dynamical 
systems, and several methods have been proposed to solve it [2–5], with the successive QR factorization of 𝐴 or use of the Gram–
Schmidt method being the most traditional ones. While these methods avoid this alignment, the SALI and GALI methods exploit 
it.

SALI is a quantity that checks whether two normalized deviation vectors

𝐝̂1 =
𝐝1

‖

‖

𝐝1‖‖
,

𝐝̂2 =
𝐝2 ,
‖

‖

𝐝2‖‖

2 
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become linearly dependent, i.e., whether they fall in the same direction (parallel or anti-parallel), and is defined by 
SALI(𝑛) = min

{

‖

‖

‖

𝐝̂1 − 𝐝̂2
‖

‖

‖

, ‖‖
‖

𝐝̂1 + 𝐝̂2
‖

‖

‖

}

, (3)

where 𝐝1 and 𝐝2 are evolved according to Eq. (2). Hence, SALI is given by the minimum of the two quantities in the curly brackets 
at any iteration 𝑛. This is equivalent to measuring the area of the parallelogram formed by these two vectors: As they fall in the 
same direction, the area goes to zero.

The GALI method generalizes this idea by considering 𝑘 normalized deviation vectors, 𝐝̂𝑘 and measuring the volume of the 
𝑘-dimensional parallelepiped formed by them. It is defined as the norm of the wedge product (denoted ∧) of the 𝑘 normalized 
deviation vectors 𝐝̂𝑘

GALI𝑘(𝑛) =
‖

‖

‖

𝐝̂1 ∧ 𝐝̂2 ∧⋯ ∧ 𝐝̂𝑘
‖

‖

‖

. (4)

It has been shown that both SALI and GALI accurately distinguish between regular and chaotic motion [32–34,34–37,41]. 
Moreover, the authors in [36] demonstrated that GALI can be used to identify the dimensionality of the space of regular motion. 
However, the analytical derivation of the relation between GALI and the LEs, given in Ref. [35], is cumbersome. Antonopoulos 
et al. [40] demonstrated numerically that the product of the 𝑘 singular values of 𝐴 is proportional to GALI𝑘. Hence, they defined 
LDI of order 𝑘 as 

LDI𝑘(𝑛) =
𝑘
∏

𝑖=1
𝜎𝑖, (5)

where 𝜎𝑖 are the singular values of 𝐴 obtained from its SVD 
𝐴 = 𝑈𝛴𝑉 𝑇 , (6)

where 𝑈 ∈ R𝑑×𝑑 is an orthogonal matrix whose columns are the left singular vectors, 𝛴 ∈ R𝑑×𝑘 is a diagonal matrix containing the 
non-negative singular values, i.e., 𝜎𝑖 = 𝛴𝑖𝑖, and 𝑉 ∈ R𝑘×𝑘 is an orthogonal matrix whose columns are the right singular vectors.

Next, we show analytically that
LDI𝑘 ≡ GALI𝑘,

for all 𝑘 indices, that is for 𝑘 ∈ [2, 𝑑], corroborating the numerical results in [40]. We start with the Gram matrix 𝐺 = 𝐴𝑇𝐴 ∈ R𝑘×𝑘, 
with entries 𝐺𝑖𝑗 = 𝐝̂𝑖 ⋅ 𝐝̂𝑗 . The wedge product of the 𝑘 vectors, 𝐝̂1, 𝐝̂2,… , 𝐝̂𝑘 is related to the determinant of the Gram matrix by

‖

‖

‖

𝐝̂1 ∧ 𝐝̂2 ∧… 𝐝̂𝑘
‖

‖

‖

2
= det (𝐺) .

The Gram matrix is written in terms of the SVD of 𝐴 (see Eq. (6)) as
𝐺 =

(

𝑈𝛴𝑉 𝑇 )𝑇𝑈𝛴𝑉 𝑇 = 𝑉 (𝛴𝑇𝛴)𝑉 𝑇 .

Since 𝑉  is an orthogonal matrix, this relation is a similarity transformation, i.e., matrix 𝐺 is similar to matrix 𝛴𝑇𝛴, and thus they 
share the same eigenvalues, and, consequently, the same determinant:

det (𝐺) = det
(

𝛴𝑇𝛴
)

=
𝑘
∏

𝑖=1
𝜎2𝑖 .

Therefore, since GALI𝑘 =
√

det (𝐺), we find that 

GALI𝑘 ≡ LDI𝑘 =
𝑘
∏

𝑖=1
𝜎𝑖. (7)

The next step is to relate the singular values 𝜎𝑖 to the LEs 𝜆𝑖. To this end, we rewrite matrix 𝐴(𝑛) in terms of the {𝐰̂𝑖} basis as 

𝐴(𝑛) =
𝑑
∑

𝑖=1
𝑒𝜆𝑖𝑛𝐰̂𝑖𝐂𝑇

𝑖 , (8)

where 𝐂𝑖 ∈ R𝑘 contains the coefficients of the projections of the initial deviation vectors onto the 𝐰̂𝑖 direction. By defining the 
following matrices

𝐶 = [𝐂1 … 𝐂𝑑 ] ∈ R𝑘×𝑑 ,

𝑊 = [𝐰̂1 … 𝐰̂𝑑 ] ∈ R𝑑×𝑑 ,

𝐷 = diag(𝑒𝜆1𝑛,… , 𝑒𝜆𝑑𝑛) ∈ R𝑑×𝑑 ,

we can rewrite Eq. (8) as 
𝐴(𝑛) = 𝑊𝐷𝐶𝑇 . (9)

It is important to mention that, in general, the columns 𝐂𝑖 are linearly independent but not orthogonal or normalized. Nevertheless, 
we can perform a QR factorization of 𝐶, and write 𝐶 = 𝑄𝑅, with 𝑄 ∈ R𝑘×𝑘 orthogonal and 𝑅 ∈ R𝑘×𝑑 upper triangular with positive 
diagonal. Substituting into Eq. (9) gives 

𝐴(𝑛) = 𝑊𝐷𝑅𝑇𝑄𝑇 . (10)
3 
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Since 𝑊  and 𝑄 are orthogonal, the singular values of 𝐴 are those of the matrix 𝐵 = 𝐷𝑅𝑇 . We know that the eigenvalues of 𝐵𝑇𝐵
(or 𝐵𝐵𝑇 ) give the 𝜎2𝑖 , where 𝜎𝑖 are the singular values of 𝐵 and, consequently, of 𝐴. Thus

𝐵𝑇𝐵 = 𝑅𝐷2𝑅𝑇 ,

where 𝐷2 = diag(𝑒2𝜆1𝑛, 𝑒2𝜆2𝑛,… , 𝑒2𝜆𝑑𝑛). Let 𝐫𝑗 ∈ R𝑘 denote the 𝑗th column of 𝑅𝑇  (or equivalently, the 𝑗th row of 𝑅). Then 

𝑅𝐷2𝑅𝑇 =
𝑑
∑

𝑗=1
𝑒2𝜆𝑗𝑛𝐫𝑗𝐫𝑇𝑗 . (11)

We can factor out 𝑒2𝜆1𝑛 in Eq. (11) and write

𝐵𝑇𝐵 = 𝑒2𝜆1𝑛
(

𝐫1𝐫𝑇1 +
𝑑
∑

𝑗=2
𝑒2(𝜆𝑗−𝜆1)𝑛𝐫𝑗𝐫𝑇𝑗

)

= 𝑒2𝜆1𝑛
(

𝑀1 + 𝐸1
)

,

where 𝑀1 = 𝐫1𝐫𝑇1  is a rank-1 matrix and 𝐸1 =
∑𝑑

𝑗=2 𝑒
2(𝜆𝑗−𝜆1)𝑛𝐫𝑗𝐫𝑇𝑗 . Since 𝜆𝑗 < 𝜆1, 𝐸1 is exponentially small compared to 𝑀1 for large 

𝑛. Therefore, we can interpret the matrix 𝑀1 + 𝐸1 as a perturbation of 𝑀1. This allows us to apply first-order matrix perturbation 
theory [44] to determine how the largest eigenvalue, 𝜇max, and hence the leading singular value, deviates from that of 𝑀1. In our 
case, the first-order perturbation theory gives

𝜇max(𝑀1 + 𝐸1) = ‖

‖

𝐫1‖‖
2 +

( 𝐫1
‖

‖

𝐫1‖‖

)𝑇
𝐸1

( 𝐫1
‖

‖

𝐫1‖‖

)

+ (‖
‖

𝐸1
‖

‖

2).

Since ‖
‖

𝐸1
‖

‖

∝ 𝑒2(𝜆2−𝜆1)𝑛, we get

𝜇max(𝑀1 + 𝐸1) = ‖

‖

𝐫1‖‖
2 + (𝑒2(𝜆2−𝜆1)𝑛),

which leads to

𝜇max(𝐵𝑇𝐵) = 𝜎21 = ‖

‖

𝐫1‖‖
2𝑒2𝜆1𝑛

for large 𝑛.
For the second largest eigenvalue, we project matrix 𝐵𝑇𝐵 onto the subspace orthogonal to 𝐫̂1 by defining 𝑃⟂

1 = 𝐼 − 𝐫̂1𝐫̂𝑇1  and 
writing

𝐵𝑇
2 𝐵2 = 𝑃⟂

1 𝐵𝑇𝐵𝑃
⟂
1 =

𝑑
∑

𝑗=2
𝑒2𝜆𝑗𝑛𝑃⟂

1 𝐫𝑗𝐫𝑇𝑗 𝑃
⟂
1 ,

so that the influence of 𝐫1 is removed. We factor the largest remaining LE out

𝐵𝑇
2 𝐵2 = 𝑒2𝜆2𝑛

(

𝑃⟂
1 𝐫2𝐫𝑇2 𝑃

⟂
1 +

𝑑
∑

𝑗=3
𝑒2(𝜆𝑗−𝜆2)𝑛𝑃⟂

1 𝐫𝑗𝐫𝑇𝑗 𝑃
⟂
1

)

= 𝑒2𝜆2𝑛
(

𝑀2 + 𝐸2
)

,

where 𝑀2 = 𝑃⟂
1 𝐫2𝐫𝑇2 𝑃

⟂
1  is rank-1 matrix in the projected subspace and 𝐸2 =

∑𝑑
𝑗=3 𝑒

2(𝜆𝑗−𝜆2)𝑛𝑃⟂
1 𝐫𝑗𝐫𝑇𝑗 𝑃

⟂
1  is exponentially small for large 

𝑛, that is
‖

‖

𝐸2
‖

‖

∝ 𝑒2(𝜆3−𝜆2)𝑛 → 0,

as 𝑛 → ∞. The first-order perturbation theory leads to

𝜇2(𝐵𝑇𝐵) = 𝜎22 = ‖

‖

‖

𝑃⟂
1 𝐫2

‖

‖

‖

2
𝑒2𝜆2𝑛.

For the 𝑖th eigenvalue, 𝜇𝑖, we define the projection onto the subspace orthogonal to all previously computed singular vectors 
𝐫̂1, 𝐫̂2,… , 𝐫̂𝑖−1

𝑃⟂
𝑖−1 = 𝐼 −

𝑖−1
∑

𝑚=1
𝐫̂𝑚𝐫̂𝑇𝑚

and restrict matrix 𝐵𝑇𝐵 to that subspace 

𝐵𝑇
𝑖 𝐵𝑖 = 𝑃⟂

𝑖−1𝐵
𝑇𝐵𝑃⟂

𝑖−1 = 𝑒2𝜆𝑖𝑛
(

𝑀𝑖 + 𝐸𝑖
)

, (12)

where 𝑀𝑖 = 𝑃⟂
𝑖−1𝐫𝑖𝐫

𝑇
𝑖 𝑃

⟂
𝑖−1 is a rank-1 matrix in the projected subspace and ‖‖𝐸𝑖

‖

‖

∝ 𝑒2(𝜆𝑖+1−𝜆𝑖)𝑛 → 0 as 𝑛 → ∞. This application removes 
the influence of all previously computed directions. Therefore, the 𝑖th singular value of 𝐵 = 𝐷𝑅𝑇 , and consequently of 𝐴, is

𝜎𝑖 =
‖

‖

‖

𝑃⟂
𝑖−1𝐫𝑖

‖

‖

‖

𝑒𝜆𝑖𝑛,

with 𝑖 = 1, 2,… , 𝑘.
4 
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Assuming chaotic dynamics, numerically, this process might lead to extremely large deviation vectors as 𝐝(𝑛) grows exponentially 
(see Eq. (1)). Instead, let us repeat this process for the normalized deviation vectors 𝐝̂. The norm of the general deviation vector is

‖𝐝(𝑛)‖ =

( 𝑑
∑

𝑖=1
𝑐2𝑖 𝑒

2𝜆𝑖𝑛

)1∕2

.

We can factorize the last equation with respect to 𝑐21𝑒2𝜆1𝑛, leading us to

‖𝐝(𝑛)‖ =

[

𝑐21𝑒
2𝜆1𝑛

(

1 +
𝑑
∑

𝑖=2

𝑐2𝑖
𝑐21

𝑒−2(𝜆1−𝜆𝑖)𝑛
)]1∕2

,

= |

|

𝑐1||𝑒
𝜆1𝑛

(

1 +
𝑑
∑

𝑖=2

𝑐2𝑖
𝑐21

𝑒−2(𝜆1−𝜆𝑖)𝑛
)1∕2

.

The quantity inside the brackets in the last equation goes to 1 as 𝑛 increases. Therefore, the norm of 𝐝 is simply
‖𝐝(𝑛)‖ = |

|

𝑐1||𝑒
𝜆1𝑛.

Thus, the normalized deviation vector is 

𝐝̂(𝑛) = 𝐝(𝑛)
‖𝐝(𝑛)‖

= sgn(𝑐1)𝐰̂1 +
𝑑
∑

𝑖=2

𝑐𝑖
|

|

𝑐1||
𝑒−(𝜆1−𝜆𝑖)𝑛𝐰̂𝑖. (13)

Let 𝐴̃(𝑛) ∈ R𝑑×𝑘 be the matrix whose columns are these normalized vectors. In the {𝐰̂𝑖} basis, it takes the form 

𝐴̃(𝑛) = ‖𝐬‖𝐰̂1

(

𝐬
‖𝐬‖

)𝑇
+

𝑑
∑

𝑖=2
‖𝐂̃𝑖‖𝑒

−(𝜆1−𝜆𝑖)𝑛𝐰̂𝑖

( 𝐂̃𝑖

‖𝐂̃𝑖‖

)𝑇

, (14)

where 𝐬 ∈ R𝑘 has entries 𝑠𝑗 = sgn(𝑐(𝑗)1 ), and 𝐂̃𝑖 ∈ R𝑘 collects the relative coefficients 𝐶̃ (𝑗)
𝑖 = 𝑐(𝑗)𝑖 ∕|𝑐(𝑗)1 |. We can express this in a 

compact matrix-product form, analogous to the non-normalized case (see Eq. (9)) as 
𝐴̃(𝑛) = 𝑊𝐷̃𝐶̃𝑇 , (15)

where

𝐶̃ = [𝐬̂, ̂̃𝐂2,… , ̂̃𝐂𝑑 ]𝑇 ∈ R𝑘×𝑑 ,

𝑊 = [𝐰̂1 ⋯ 𝐰̂𝑑 ] ∈ R𝑑×𝑑 ,

𝐷̃ = diag
(
√

𝑘, 𝑒−(𝜆1−𝜆2)𝑛,… , 𝑒−(𝜆1−𝜆𝑑 )𝑛
)

∈ R𝑑×𝑑 .

Substituting the QR factorization 𝐶̃ = 𝑄̃𝑅̃, where 𝑄̃ ∈ R𝑘×𝑘 and 𝑅̃ ∈ R𝑘×𝑑 into Eq. (15) yields 
𝐴̃(𝑛) = 𝑊𝐷̃𝑅̃𝑇 𝑄̃𝑇 . (16)

As in the non-normalized case, the singular values of 𝐴̃ are the singular values of 𝐵̃ = 𝐷̃𝑅̃𝑇 , i.e., the square roots of the eigenvalues 
of 

𝐵̃𝑇 𝐵̃ = 𝑅̃𝐷̃2𝑅̃𝑇 = 𝑘 𝐫̃1𝐫̃𝑇1 +
𝑑
∑

𝑗=2
𝑒−2(𝜆1−𝜆𝑗 )𝑛𝐫̃𝑗 𝐫̃𝑇𝑗 , (17)

where 𝐫̃𝑗 ∈ R𝑘 denotes the 𝑗th column of 𝑅̃𝑇 . Eq. (17) is already in the form of a rank-1 matrix plus an exponentially small matrix. 
Applying first-order perturbation theory gives the largest eigenvalue

𝜇max(𝐵̃𝑇 𝐵̃) = ‖

‖

𝐫̃1‖‖
2𝑘.

For the remaining eigenvalues (2 ≤ 𝑖 ≤ 𝑘), we can define the projection onto the subspace orthogonal to vectors {𝐫̃1, 𝐫̃2,… , 𝐫̃𝑖−1}
as

𝑃⟂
𝑖 = 𝐼 −

𝑖−1
∑

𝑚=1

̂̃𝐫𝑚 ̂̃𝐫𝑇𝑚

and restrict the matrix 𝐵̃𝑇 𝐵̃ to this subspace

𝐵̃𝑇
𝑖 𝐵̃𝑖 = 𝑃⟂

𝑖−1𝐵̃
𝑇 𝐵̃𝑃⟂

𝑖−1 = 𝑒−2(𝜆1−𝜆𝑖)𝑛
(

𝑃⟂
𝑖−1𝐫̃𝑖𝐫̃

𝑇
𝑖 𝑃

⟂
𝑖−1 +

𝑑
∑

𝑗=𝑖+1
𝑒−2(𝜆𝑗−𝜆𝑖)𝑛𝑃⟂

𝑗−1𝐫̃𝑗 𝐫̃
𝑇
𝑗 𝑃

⟂
𝑗−1

)

.

This corresponds to an exponentially small perturbation of a rank-1 matrix in the projected subspace (see Eq. (12)). Thus, for large 
𝑛, the 𝑖th eigenvalue of 𝐵̃𝑇

𝑖 𝐵̃𝑖 at first-order is

𝜇 (𝐵̃𝑇 𝐵̃ ) = ‖𝑃⟂ 𝐫̃ ‖
2
𝑒−2(𝜆1−𝜆𝑖)𝑛.
𝑖 𝑖 𝑖 ‖

‖

𝑖−1 𝑖‖
‖

5 
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Fig. 1. The attractor of the three-dimensional Hénon map of Eq. (20) with parameters (𝑀1,𝑀2, 𝐵) = (0.0, 0.85, 0.7).

Finally, the asymptotic behavior of the singular values of 𝐴̃ are 
𝜎1 ∝

√

𝑘,

𝜎𝑖 ∝ 𝑒−(𝜆1−𝜆𝑖)𝑛,
(18)

for 2 ≤ 𝑖 ≤ 𝑘.
The main difference between the singular values of the normalized deviation matrix and the non-normalized ones is that the 

largest singular value is now bounded instead of growing exponentially for chaotic orbits. The remaining singular values decay 
exponentially with rates given by (𝜆1 − 𝜆𝑖) and LDI, and GALI (see Eq. (7)), is the product of all singular values 

LDI𝑘 =
𝑘
∏

𝑖=1
𝜎𝑖 ∝ 𝑒−[(𝜆1−𝜆2)+(𝜆1−𝜆3)+⋯+(𝜆1−𝜆𝑘)]𝑛 = 𝑒−[(𝑘−1)𝜆1−𝜆2−𝜆3−⋯−𝜆𝑘]𝑛. (19)

This expression is the same as the one in [35] for GALI𝑘 with the advantage of having been derived here using easier analytical 
calculations. By that, we mean our analytical derivations are easier to follow as they involve the use of the SVD method instead of 
wedge products to compute the volume of higher-dimensional parallelepipeds [35].

Both GALI and LDI ultimately quantify the degree of linear dependence of deviation vectors. As these vectors evolve in the 
tangent space of chaotic dynamics, they progressively align with the most unstable direction, eventually collapsing onto a single 
direction and becoming linearly dependent. A set of vectors is linearly independent if and only if the determinant of the Gram 
matrix is nonzero, or equivalently, if all singular values are nonzero. In practice, computing singular values is numerically more 
stable and reliable than evaluating determinants as the determinants are highly sensitive to rounding-off errors and can easily 
overflow/underflow [45,46]. In Section 3, we numerically validate our analytical result considering discrete- and continuous-time 
dynamical systems. The validity of Eq. (19) has already been verified thoroughly for continuous-time systems, both Hamiltonian [35] 
and dissipative [41], however, to the best of our knowledge, not for discrete-time systems.

3. Numerical verification of the analytical expression for the decay rates of the Linear Dependence Index

All our numerical simulations have been performed using pynamicalsys [47], an open-source Python toolkit for the analysis of 
dynamical systems.

3.1. Discrete-time systems

To test our analytical result for the LDI, Eq. (19), let us first consider a three-dimensional version of the Hénon map 𝛷 ∶ R3 → R3, 
given by the following equations [48] 

𝛷 ∶

⎧

⎪

⎨

⎪

𝑥𝑛+1 = 𝑦𝑛,
𝑦𝑛+1 = 𝑧𝑛,

2

(20)
⎩

𝑧𝑛+1 = 𝑀1 + 𝐵𝑥𝑛 +𝑀2𝑦𝑛 − 𝑧𝑛.

6 
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Fig. 2. The time evolution of (a) the LEs and (b) the singular values of the deviation matrix (see Eq. (14)) for the three-dimensional Hénon 
map (see Eq. (20)) with parameters (𝑀1,𝑀2, 𝐵) = (0.0, 0.85, 0.7). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

This map is one of the generalizations of the paradigmatic two-dimensional Hénon map. Here, (𝑥, 𝑦, 𝑧) ∈ R3 are the state variables 
and (𝑀1,𝑀2, 𝐵) ∈ R3 are the parameters of the system. The determinant of the Jacobian is constant, det (𝐷𝛷) = 𝐵, so the map is 
dissipative for 𝐵 < 1. In our simulations, we use 𝑀1 = 0, 𝑀2 = 0.85, 𝐵 = 0.7, a total iteration time of 𝑁 = 1.5 × 106, and discard a 
transient of 0.5× 106. Fig.  1 shows the resulting attractor for the initial condition (𝑥0, 𝑦0, 𝑧0) = (0.6, 0.2, 0.3). This attractor is chaotic, 
as confirmed by the LEs in Fig.  2(a). Particularly, there are three exponents, with the largest (green curve) being positive, the second 
(yellow curve) being approximately zero, and the third being negative.

To further verify the relation between the singular values of the deviation matrix and the LEs (see Eq. (18)), we compute the 
time series of the singular values, shown in Fig.  2(b). The largest singular value, 𝜎1, rapidly converges to the constant value 𝜎1 =

√

3, 
while the remaining two singular values (yellow and blue curves) decay exponentially with time. The dashed lines, corresponding 
to the analytical values predicted by Eq. (18) using the LEs from Fig.  2(a), are in excellent agreement with the numerical results, 
confirming the validity of our analytical derivation for the singular values.

Having confirmed that the singular values of the deviation matrix follow the analytical predictions, next we compute LDI, defined 
as the product of these singular values, shown in Eq. (19). We consider an ensemble of 100 initial conditions, randomly chosen within 
a distance of at most 10−3 from (𝑥0, 𝑦0, 𝑧0) = (0.6, 0.2, 0.3). For each initial condition, we compute LDI2 in Fig.  3(a), LDI3 in Fig.  3(b), 
and perform a best fit for each LDI curve to obtain the corresponding decay rates. This process is repeated for all initial conditions, 
and the results are averaged to obtain a representative LDI behavior. In the figures, the black dashed curves represent the average 
of all best-fit curves, while the black dash-dotted curves indicate the mean ± three standard deviations of these fits. For each initial 
condition in the ensemble, we also compute the LEs and calculate the mean and standard deviation over all 100 initial conditions. 
These averaged values provide the reference combinations of LEs we use for comparison with the LDI decay rates. The decay rates 
obtained from the LDI curves are in excellent agreement with these predictions (the single numbers in round brackets denote one 
standard deviation around the reported number), for example −0.021(1) = (−0.02,−0.022): LDI2 ∝ exp (−0.021(1)𝑛) closely matches 
𝜆1−𝜆2 = 0.01999(6), while LDI3 ∝ exp (−0.42(3)𝑛) is consistent with 2𝜆1−𝜆2−𝜆3 = 0.4169(2). These results confirm that LDI accurately 
captures the combination of LEs predicted by Eq. (19), thereby validating our analytical derivation for discrete-time chaotic systems.

Next, we test our analytical results for a higher-dimensional discrete-time chaotic system. We consider a network of 𝑁 identical 
logistic maps coupled in a ring topology [49] 

𝑥(𝑖)𝑛+1 = 𝑓
(

𝑥(𝑖)𝑛
)

+ 𝜎
2𝑟𝑁

𝑖+𝑟𝑁
∑

𝑗=𝑖−𝑟𝑁

[

𝑓
(

𝑥(𝑗)𝑛
)

− 𝑓
(

𝑥(𝑖)𝑛
)]

, (21)

where 𝑥(𝑖) denotes the state of the 𝑖th node (𝑖 = 1, 2,… , 𝑁), 𝑛 is the discrete time step, 𝜎 the coupling strength, 𝑟 the coupling 
radius, and 𝑓 (𝑥) is the local map, chosen as the logistic map 𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥). We fix the bifurcation parameter at 𝑎 = 3.8, so that 
the uncoupled dynamics of each node is chaotic. We consider a network of size 𝑁 = 10 nodes, a coupling strength of 𝜎 = 0.15, and 
a coupling radius of 𝑟 = 0.15. To illustrate the dynamics of the network, we show the space–time evolution of the network in Fig. 
4(a). The figure reveals the absence of coherent spatiotemporal patterns, indicating incoherent dynamics consistent with the weak 
coupling. We also compute the evolution of the LEs, shown in Fig.  4(b). The network exhibits hyperchaotic behavior, with the two 
largest LEs being positive.

Similarly to the previous system, we compute the LDI for an ensemble of 100 initial conditions, randomly chosen within a 
distance of 10−3 from each other. Since the network is 𝑁 = 10-dimensional, LDI  can be computed up to 𝑘 = 10. However, LDI
𝑘 𝑘
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Fig. 3. LDI curves for the three-dimensional Hénon map (see Eq. (20)) with parameters (𝑀1,𝑀2, 𝐵) = (0.0, 0.85, 0.7). Panels (a) and (b) show LDI2
and LDI3, respectively, computed for 100 initial conditions randomly chosen within a distance of at most 10−3 from (𝑥0, 𝑦0, 𝑧0) = (0.6, 0.2, 0.3). 
The black dashed curves indicate the best-fit average, while the black dash-dotted curves represent the mean ± three standard deviations. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Spatiotemporal plot and evolution of Lyapunov exponents of system (21): (a) Space–time evolution of a network of 𝑁 = 10 identical 
logistic maps coupled in a ring topology with coupling strength 𝜎 = 0.15, coupling radius 𝑟 = 0.15, and individual map bifurcation parameter 
𝑎 = 3.8. (b) LEs of the network as a function of iteration number. Note that we plot 0.5𝜆10 for clarity. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. LDI curves for a network of 𝑁 = 10 identical logistic maps coupled in a ring topology (see Eq. (21)) with coupling strength 𝜎 = 0.15, 
coupling radius 𝑟 = 0.15, and individual map bifurcation parameter 𝑎 = 3.8. Panels (a)–(f) show LDI2, LDI3, LDI4, LDI5, LDI6, and LDI8, respectively, 
computed for 100 initial conditions randomly chosen within a distance of 10−3 from each other. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
8 



M.R. Sales et al. Chaos, Solitons and Fractals 205 (2026) 117884 
Fig. 6. Plot of the relative energy error and LEs in time for the FPU-𝛽 Hamiltonian in Eq. (22) with six particles and 𝛽 = 1.0: (a) Relative energy 
error, 𝐸𝑟 = |𝐸(𝑡) − 𝐸0|∕𝐸0 as a function of time. The equations of motion are integrated using the 4th-order Runge–Kutta method with a time 
step 𝛥𝑡 = 0.005. (b) Evolution of the LEs for the same system. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

decay toward zero more rapidly as 𝑘 gets closer to 10, yielding fewer data points and reducing the quality of the fit. This is so as the 
exponent in the exponential decay increases as 𝑘 gets closer to 10. Therefore, we select 𝑘 = 2, 3, 4, 5, 6, 8 as representative examples. 
For each LDI curve, we perform a best-fit analysis and plot the results together with the mean ± three standard deviations of all 
fits. We also compute the LEs for each initial condition and calculate their ensemble mean and standard deviations. Fig.  5 shows 
the LDI curves alongside the theoretical decay rates, given by 𝛬𝑘 = (𝑘 − 1)𝜆1 −

∑𝑘
𝑗=2 𝜆𝑗 . Again, the decay rates obtained from the 

LDI curves are in excellent agreement with the analytical expression obtained in Section 2. It is worth noting that the standard 
deviation for the numerically obtained LDI8 is larger than for the smaller-𝑘 cases. This is a consequence of the rapid decay of LDI8, 
which results in fewer data points for the fitting procedure. For comparison, LDI2 takes approximately 700 iterations to drop below 
10−16, whereas LDI8 reaches this threshold in about 30 iterations. Although this rapid decay leads to a poorer comparison with the 
analytical expression, it significantly reduces the computational cost for the detection of chaotic trajectories.

3.2. Continuous-time systems

To complement our analysis for discrete-time systems, we consider here a continuous-time system: the well-known Fermi–
Pasta–Ulam (FPU) chain, a paradigmatic Hamiltonian system that can be extended to any number of degrees of freedom, to validate 
the analytical expression for the LDI given by Eq. (19). We focus on the FPU-𝛽 model, characterized by the Hamiltonian 

𝐻(𝐩, 𝐱) = 1
2

𝑁
∑

𝑗=1
𝑝2𝑗 +

𝑁
∑

𝑗=0

[ 1
2
(

𝑥𝑗+1 − 𝑥𝑗
)2 + 1

4
𝛽
(

𝑥𝑗+1 − 𝑥𝑗
)4
]

= 𝐸, (22)

where 𝑥𝑗 denotes the displacement of the 𝑗th particle from its equilibrium position, with fixed boundary conditions (i.e., the particles 
with indices 𝑗 = 0 and 𝑗 = 𝑁 + 1 remain stationary at all times). The 𝑝𝑗 are the corresponding conjugate momenta, 𝛽 > 0 is the 
nonlinear parameter, and 𝐸 is the total, fixed energy of the system.

In our simulations, we set 𝛽 = 1.0 and consider a chain of 𝑁 = 6 particles, corresponding to 6 degrees of freedom and a system 
dimension of 12. All particles are initially at rest (𝑝𝑗 = 0) and at their equilibrium positions (𝑥𝑗 = 0), except for the second particle, 
which is displaced at 𝑥1 = 1. This setup yields an initial energy of 𝐸0 = 1.5. Since our focus is on the short-time evolution of the 
system, we integrate the equations of motion using the standard 4th-order Runge–Kutta scheme with a time step 𝛥𝑡 = 0.005. To 
verify the accuracy of this numerical integration, we monitor the relative energy error,

𝐸𝑟 =
|

|

𝐸(𝑡) − 𝐸0
|

|

𝐸0
,

for a trajectory integrated up to 𝑇 = 104 (see Fig.  6(a)). Even though the Runge–Kutta method is not a symplectic integrator, for 
this choice of time step, the energy error remains below 10−7 up to 𝑇 = 104, providing an accurate description of the evolution 
of the system. Fig.  6(b) shows the evolution of the LEs. The system displays hyperchaotic behavior, and the sum of all exponents 
converges to ∑12

𝑗=1 𝜆𝑗 ≈ −3.88×10−12, as expected for Hamiltonian systems, since they are volume-preserving in phase space. The fact 
that our numerical result remains extremely close to zero, thus, provides additional confirmation of the accuracy of our numerical 
integration.

To obtain the LDI decay rates, we consider 100 initial conditions randomly chosen within a distance of 10−2 from the reference 
initial condition, i.e., 𝑥1 = 0.01𝜖, where 𝜖 is a uniformly distributed random number in the interval [0, 1). Similarly to the case of 
the network, we select 𝑘 = 2, 3, 4, 5, 6, 8 as representative examples, and for each LDI curve, we calculate the best-fit to obtain the 
9 
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Fig. 7. LDI curves for the FPU chain with six particles and 𝛽 = 1.0 (see Eq. (22)). Panels (a)–(f) show LDI2, LDI3, LDI4, LDI5, LDI6, and LDI8, 
respectively, computed for 100 initial conditions randomly perturbed within a distance of 10−2 from the reference configuration, as discussed in 
the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

corresponding decay rates. We then average the results over the 100 trajectories to obtain a representative LDI behavior. Fig.  7 
shows the LDI curves for the aforementioned 𝑘 values. The black dashed curves represent the average of all best-fit curves, while 
the black dash-dotted curves indicate the mean ± three standard deviations of the best-fit curves. Additionally, we compute the LEs 
for each initial condition for 𝑇 = 104 and calculate their ensemble mean and standard deviations.

The decay rates obtained from the LDI curves are in good agreement with the theoretical predictions provided by Eq. (19), 
based on the LEs in Fig.  6(b). For 𝑘 = 2, we find a decay rate of 0.088(9), which closely matches the corresponding analytical value 
𝛬2 = 𝜆1−𝜆2 = 0.09(3). For larger 𝑘, the decay rates increase, reflecting the faster contraction of higher-order deviations: LDI3 decays 
at 0.25(1) compared with 𝛬3 = 2𝜆1 −𝜆2 −𝜆3 = 0.31(6), LDI4 at 0.41(4) versus 𝛬4 = 3𝜆1 −

∑4
𝑗=2 𝜆𝑗 = 0.5(1), and so on up to LDI8, which 

decays at 1.32(3), with 𝛬8 = 1.7(2). While small discrepancies between numerical and theoretical values become more pronounced 
for larger 𝑘, these differences are expected due to the rapid decay of LDI𝑘, which reduces the number of points available for fitting 
and increases the standard deviation. Overall, the results confirm that the analytical expression 𝛬𝑘 = (𝑘 − 1)𝜆1 −

∑𝑘
𝑗=2 𝜆𝑗 provides 

an accurate prediction for the decay of the LDI not only in discrete but also in continuous-time systems.

4. Analytical derivation of the decay rate of the Smaller Alignment Index for chaotic trajectories of discrete systems

In this section, we present an analytical derivation of the decay rate of SALI for chaotic trajectories of discrete-time systems and 
validate it numerically. While Moges et al. [41] have demonstrated recently that GALI2 (i.e., SALI) can successfully detect stable 
fixed points in a three-dimensional generalization of the Hénon map, they also showed that GALI fails to distinguish among limit 
cycles, chaotic, and hyperchaotic attractors, as it decays exponentially in all these cases. In contrast, Skokos et al. [34,35] derived 
analytical expressions for the decay of SALI in Hamiltonian systems with 𝑁 degrees of freedom. They showed that if the system has 
a single positive Lyapunov exponent (LE) with the second being zero, SALI decays as 

SALI(𝑡) ∝ 𝑒−𝜆1𝑡, (23)

whereas it decays as 

SALI(𝑡) ∝ 𝑒−(𝜆1−𝜆2)𝑡 (24)

if there are two positive LEs. While these results remain valid for 𝑑-dimensional continuous-time chaotic systems [41], there is a 
subtle difference when it comes to discrete-time chaotic systems. SALI in those systems exhibits a different behavior, which we 
derive and clarify next.
10 



M.R. Sales et al. Chaos, Solitons and Fractals 205 (2026) 117884 
From Section 2, a normalized deviation vector, 𝐝̂, of a 𝑑-dimensional discrete-time system is given by Eq. (13). According to the 
SALI definition in Eq. (3), two such normalized vectors are required, that is 𝐝̂1, 𝐝̂2. Their sum and difference are given by 

𝐝̂1 ± 𝐝̂2 =
𝐝1

‖

‖

𝐝1‖‖
±

𝐝2
‖

‖

𝐝2‖‖
=
(

sgn(𝑐(1)1 ) ± sgn(𝑐(2)1 )
)

𝐰̂1 +
𝑑
∑

𝑖=2

⎛

⎜

⎜

⎝

𝑐(1)𝑖
|

|

|

𝑐(1)1
|

|

|

±
𝑐(2)𝑖
|

|

|

𝑐(2)1
|

|

|

⎞

⎟

⎟

⎠

𝑒−(𝜆1−𝜆𝑖)𝑛𝐰̂𝑖

= 𝐶1,±𝐰̂1 +
𝑑
∑

𝑖=2
𝐶2,𝑖,±𝑒

−(𝜆1−𝜆𝑖)𝑛𝐰̂𝑖.

(25)

The norm is then given by 
‖

‖

‖

‖

‖

𝐝1
‖

‖

𝐝1‖‖
±

𝐝2
‖

‖

𝐝2‖‖

‖

‖

‖

‖

‖

=

[

𝐶2
1,± +

𝑑
∑

𝑖=2
𝐶2
2,𝑖,±𝑒

−2(𝜆1−𝜆𝑖)𝑛

]1∕2

. (26)

Since SALI is defined as the minimum over the ± combinations and min(𝐶1,+, 𝐶1,−) = 0, we have

SALI(𝑛) =

[ 𝑑
∑

𝑖=2
𝐶2
𝑖 𝑒

−2(𝜆1−𝜆𝑖)𝑛

]1∕2

,

with 𝐶𝑖 = min(𝐶2,𝑖,+, 𝐶2,𝑖,−). Factoring out the dominant term 𝐶2𝑒−(𝜆1−𝜆2)𝑛 gives

SALI(𝑛) = |

|

𝐶2
|

|

𝑒−(𝜆1−𝜆2)𝑛
[

1 +
𝑑
∑

𝑖=3

(

𝐶𝑖
𝐶2

)2
𝑒−2(𝜆2−𝜆𝑖)𝑛

]1∕2

.

Since 𝑒−2(𝜆2−𝜆𝑖)𝑛 (𝑖 ≥ 3) decays faster than 𝑒−(𝜆1−𝜆2)𝑛, the higher-order terms can be neglected, yielding 
SALI(𝑛) ∝ 𝑒−(𝜆1−𝜆2)𝑛 (27)

for discrete-time chaotic dynamics.
Interestingly, the authors in Ref. [35] showed that GALI2 ∝ SALI, and since we have shown here that GALI𝑘 = LDI𝑘 (see Eq. (7)), 

including 𝑘 = 2, the results in Fig.  5(a) for the network of 𝑁 = 10 coupled logistic maps (see Eq. (21)) also apply to the case where 
LDI2 is replaced by SALI. Hence, the results in Fig.  5(a) confirm numerically that Eq. (27) captures accurately the decay rate of 
SALI in the case where the first and the second LEs are positive, as corroborated by the plot of the LEs in Fig.  4(b).

Although Eq. (27) resembles Eqs. (23) and (24) mathematically, its interpretation is different when it comes to discrete-time 
systems: the decay rate depends on the two largest LEs, regardless of whether they are positive or negative. In contrast, the results 
in Ref. [34] assume continuous-time dynamics, where the second largest exponent is always non-negative for chaotic orbits. For 
example, in a two-dimensional area-preserving map, chaos is characterized by 𝜆1 > 0 and 𝜆2 = −𝜆1. While the continuous-time 
assumption would incorrectly predict decay as in Eq. (23), the correct behavior follows Eq. (27), accounting for both exponents.

To demonstrate numerically Eq. (27), let us consider two examples of paradigmatic two-dimensional maps. The first one is 
Arnold’s cat map, 𝛷 ∶ T2 → T2, where T2 = R2∕Z2 denotes the two-dimensional torus 

𝛷 ∶

{

𝑥𝑛+1 = 2𝑥𝑛 + 𝑦𝑛 mod 1,
𝑦𝑛+1 = 𝑥𝑛 + 𝑦𝑛 mod 1.

(28)

The system is a linear, hyperbolic, and mixing transformation with a positive largest LE. Its Jacobian matrix is constant, 
i.e., independent of the state variables, and is given by

𝛷 =
(

2 1
1 1

)

.

Being symmetric, this matrix has real eigenvalues and mutually orthogonal eigenvectors. The map possesses a single fixed point at 
the origin (0,0). The eigenvalues of 𝛷 are given by

𝜇𝑖 =
3 ±

√

5
2

.

Since |
|

𝜇1|| > 1 and |
|

𝜇2|| < 1, the origin is a hyperbolic (saddle) point. The eigenvector associated with 𝜇1 defines the unstable 
direction along which trajectories are exponentially stretched, while the eigenvector associated with 𝜇2 defines the stable direction 
along which trajectories are exponentially contracted.

Fig.  8(a) shows a rectangle of 20000 randomly chosen initial conditions, and Fig.  8(b) shows how these initial conditions evolve 
for 100 iterations. The action of the map on the initial conditions is to stretch them exponentially along the unstable manifold and 
contract them exponentially along the stable manifold, with the modulo operation inducing a folding of phase space. The iterative 
application of this stretch–contract–fold mechanism produces a rapid dispersion of initially localized sets, ensuring strong mixing 
and the characteristic loss of memory of initial conditions observed in chaotic systems. In this setting, the LEs coincide with the 
logarithms of the eigenvalues of the Jacobian, i.e., 𝜆𝑖 = log𝜇𝑖, as the local dynamics everywhere is governed by the same linear 
transformation associated with the fixed point at the origin.
11 
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Fig. 8. The time evolution of a rectangle of initial conditions (see panels (a) and (c)) under the dynamics of (b) Arnold’s cat map (see Eq. (28)) 
and (d) the baker map with 𝑘 = 0.3 (see Eq. (29)).

The second map is the two-dimensional baker map [50]. It is a piecewise linear map defined as 𝛷 ∶ 𝐱𝑛+1 = 𝐵(𝐱𝑛), where 𝐱 = (𝑥, 𝑦)
and 

𝐵(𝑥𝑛, 𝑦𝑛) =

{

𝐵−(𝑥𝑛, 𝑦𝑛) = (𝑘𝑥𝑛, 2𝑦𝑛),
𝐵+(𝑥𝑛, 𝑦𝑛) = (1 + 𝑘(𝑥𝑛 − 1), 1 + 2(𝑦𝑛 − 1)),

(29)

where 𝐵− and 𝐵+ are valid for 𝑦𝑛 ≤ 1∕2 and 𝑦𝑛 > 1∕2, respectively. Here the parameter 0 < 𝑘 < 1 controls the horizontal contraction 
and we consider 𝑘 = 0.3. The action of the map is to stretch points vertically by a factor of 2 while simultaneously contracting them 
horizontally by a factor of 𝑘, relative to the origin for the lower half and to the point (1, 1) for the upper half. Similar to Arnold’s 
cat map, the Jacobian matrix of the baker map is constant

𝛷 =
(

𝑘 0
0 2

)

.

The eigenvalues of the Jacobian matrix are easily obtained as 𝜇1 = 2 and 𝜇2 = 𝑘. The determinant of the Jacobian matrix is 
det (𝛷) = 2𝑘, which determines the phase space volume contraction rate: for 𝑘 = 0.5 the map is area-preserving, for 𝑘 < 0.5
dissipative, and for 𝑘 > 0.5 expansive.

The baker map has two fixed points: the origin (0, 0) and the point (1, 1). Since |
|

𝜇1|| > 1 and |
|

𝜇2|| < 1, both of these points are 
hyperbolic. Their combined action produces the repeated stretching and contraction characteristic of chaotic motion. Consequently, 
the LEs of the map follow directly from the logarithms of the eigenvalues of the Jacobian matrix: 𝜆1 = log 2 and 𝜆2 = log 𝑘. Fig.  8(c) 
shows a rectangle of 20000 randomly chosen initial conditions, and Fig.  8(d) shows the evolution of these initial conditions after 
100 iterations.

Since the Jacobian matrices of both maps are constant, we analyze SALI using an ensemble of deviation matrices instead of 
initial conditions. For each deviation matrix, we first compute SALI over time. We then perform a best fit to this curve to extract its 
decay rate. This process is repeated for all deviation matrices in the ensemble. Finally, we average all the best-fit curves to obtain 
a representative SALI behavior. Fig.  9(a) shows the SALI curves for the cat map and Fig.  9(b) for the baker map, along with the 
average best-fit curve (black dashed line) and the mean ± three standard deviations of all best-fit curves (black dash-dotted lines). 
The decay rates obtained from the SALI curves are in excellent agreement with the theoretical prediction in Eq. (27). For the cat 
map, the decay rate is 1.92(1), closely matching the difference 𝜆1−𝜆2 ≈ 1.92485 calculated from the Jacobian eigenvalues. Similarly, 
for the baker map, the SALI decay rate is 1.892(6), in good agreement with 𝜆1 − 𝜆2 ≈ 1.89712. Therefore, these results confirm that 
the SALI decay is determined by the two largest LEs, even when the second one is negative.

5. Conclusions

In this work, we have analytically derived the formula for the decay rates of LDI for chaotic orbits and demonstrated that they 
are the same as those of GALI. The derivation was carried out using the Singular Value Decomposition (SVD) of the matrix formed by 
the deviation vectors, which provides a direct connection between the decay of LDI and the growth rates of the singular values. This 
linear-algebraic formulation offers a more transparent route to the decay behavior compared to the wedge-product interpretation of 
GALI and applies in the same way to both discrete- and continuous-time systems. While previous studies validated GALI [35] and 
LDI [40] in continuous-time Hamiltonian systems, here we have provided a comprehensive verification for discrete-time systems, 
including both low- and high-dimensional systems. Recently, Moges et al. [41] applied GALI to a three-dimensional generalization 
12 
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Fig. 9. Time evolution of the SALI for 100 randomly chosen deviation vectors: (a) Arnold’s cat map [Eq. (28)] and (b) the baker map with 
𝑘 = 0.3 [Eq. (29)]. Each color represents a different deviation vector. The black dashed lines indicate the average SALI decay, while the black 
dash-dotted lines show the average ± three standard deviations from the mean. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

of the Hénon map. They demonstrated that GALI2 reliably detects stable fixed points and that GALI2 and GALI3 decay exponentially. 
Here, our focus has been on establishing the equivalence of the decay rates of LDI and GALI and on confirming analytically and 
numerically their validity, given in Eq. (19) for both discrete-time and continuous-time systems.

Moreover, we have provided an analytical formula for the decay rate of SALI for discrete-time chaotic systems. While earlier 
derivations were valid for continuous-time dynamics [34], the decay rate therein underestimated the decay rate in discrete-time 
systems. Our analysis for chaotic discrete-time systems shows that SALI decays according to the difference of the two largest LEs, even 
when the second exponent is negative. We have confirmed numerically our analytical results for two paradigmatic two-dimensional 
chaotic maps, Arnold’s cat map and baker map.

Interestingly, the LDI method can, in principle, be employed to reconstruct the entire Lyapunov spectrum. Starting from the 
largest LE, 𝜆1, which is generally easier to estimate, one could determine 𝜆2 from the decay rate of LDI2, then 𝜆3 from LDI3, and 
so on and so forth. However, this procedure accumulates numerical errors from the best-fits of successive LDI curves and requires 
computing all indices from LDI2 up to LDI𝑑 , where 𝑑 is the dimension of the system. As we have shown here, the best-fit of higher 
order LDI is less accurate due to its rapid decay, and consequently, there are fewer points available to compute the best-fit lines. 
As a result, it is computationally more demanding and less accurate than the classical Benettin et al. [3] algorithm based on QR 
decomposition. For these reasons, we have not pursued or displayed such results in this paper.

Overall, our results provide a unified analytical and numerical framework for understanding the behavior of the decay rates of 
LDI, GALI, and SALI in both discrete- and continuous-time chaotic systems. This framework enables efficient chaos detection and a 
deeper understanding of phase-space structure in low- and high-dimensional systems, and can be readily applied to a wide range 
of complex dynamical systems.
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Table A.1
Wall times for computing LDI𝑘 for the coupled logistic map network introduced in Section 3.1 and defined in 
Eq. (21), with system size 𝑁 = 10. For each value of 𝑘, the wall time was obtained from 10 independent runs, and 
the reported values correspond to the sample mean and standard deviation.
 𝑘 2 10 50 100 250 500  
 Time 30.7 s ± 3.78 s 1.88 s ± 336ms 531ms ± 118ms 318ms ± 96.3ms 293ms ± 35.3ms 576ms ± 59ms 

Appendix. Computational performance

In this section, we compare the computational cost of computing the Lyapunov exponents using the standard QR-based 
method [3] with the cost of evaluating the LDI𝑘 indicator via the SVD-based procedure. All benchmarks were performed using 
the coupled logistic map network defined in Eq. (21) with 𝑁 = 500 nodes and a coupling strength and radius of (𝜎, 𝑟) = (0.15, 0.05). 
These benchmarks were obtained in a MacBook Air equipped with an Apple M4 chip, featuring a 10-core CPU. For each method, 
we carried out 10 independent simulations, each consisting of 1.5 × 106 iterations after discarding an initial transient of 0.5 × 106

steps. We obtain a mean wall-clock time of 53.1 s ± 3.32 s for the maximum Lyapunov exponent only across the 10 realizations.
Table  A.1 reports the corresponding wall times for LDI𝑘 for selected values of 𝑘. In contrast to the Lyapunov exponent calculation, 

the LDI𝑘 computation is substantially faster, typically by about two orders of magnitude. This difference is due to the fact that the 
LDI𝑘 indicator allows for early termination: we are not concerned with the precise asymptotic value of LDI𝑘, but rather with how 
it decays. Chaotic trajectories exhibit an exponential decay, whereas regular trajectories decay algebraically. Therefore, once LDI𝑘
falls below a threshold (here chosen as 10−16), the trajectory’s nature is already determined, and the computation is stopped.

Importantly, this early termination applies only to the LDI calculation. The Lyapunov exponent computation, on the other 
hand, requires performing QR orthonormalization at every iteration step up to the full simulation time, regardless of whether 
the trajectory is chaotic or regular. As a result, the LDI approach incurs far fewer tangent-space updates and avoids the repeated 
re-orthogonalization steps inherent in the Lyapunov exponent algorithm. This makes LDI𝑘 particularly advantageous for long 
simulations and in large-dimensional systems where the cost of QR-based propagation is significant.

Data availability

The source code to reproduce the results reported in this paper is freely available in the GitHub repository in Ref. [51].
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