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a b s t r a c t 

In this paper, we study some dynamic properties for oval-like billiards. These billiards have two control 

parameters, named ε, which controls the deformation of the boundary, and p, which changes the num- 

ber of inflection points. The particle’s position (X, Y ) uses Cartesian coordinates, and the angle μ gives 

us the particle’s direction. Here we consider a Poincare section, where we calculate the position X (in the 

horizontal axis) and angle μ every time a particle crosses Y = 0 (in the vertical axis). We compute the 

phase space and the conservative generalized bifurcation diagrams (CGBD). These diagrams are obtained 

when changing the initial position X and the control parameter ε. We plot the respective maximum 

Lyapunov exponent for each combination of the control parameter and initial condition, which uses a 

customized color palette. These diagrams show how complex billiards dynamics are, where one can find 

the direct and inverse parabolic bifurcations. Moreover, one can highlight periodic, quasi-periodic, and 

chaotic regions. We found a fractal behavior (self-similar structure), where we verified the existence of 

period-adding structures logical sequences (periodic orbits) in the CGBD. These sequences accumulate in 

different regions depending on the control parameters, following the main body’s period and accumulat- 

ing in different regions. When we set the control parameter p to 1, we observe that chaos dominates for a 

high enough value of the control parameter ε (which controls our billiard’s deformation). We also studied 

some orbits embedded in stochastic layers that appear near saddle points, which obey another period- 

adding logical sequence. These stochastic layers play a crucial role in the dynamics of billiard systems 

because that chaos grows in such regions, near saddle points, after increasing the control parameter’s 

value. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The study of billiards is an important research field in dynam- 

cal systems. We define a billiard as a closed domain bordered 

y a hard wall, in which we introduce a point-like particle [1–9] . 

he main idea is to have a simple class of models, which shows 

he complicated behavior of non-integrable smooth Hamiltonian 

ystems without integrating a differential equation. By connecting 

he dynamics with geometry, billiards correspond to models that 

ualitatively mimic various complex systems’ properties, mech- 

nisms, or effects. Depending on the boundary’s shape, we can 

bserve regular [1,4,5] , mixed [6–9] , or fully chaotic dynamics 
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10–12] . It can be considered both classical [1,4–12] and quantum 

13–15] versions, as well as relativistic particles [16,17] . Several 

ifferent billiards can be studied. We find some applications in 

hysical problems, such as superconducting and confinement of 

lectrons in semiconductors by electric potentials [18,19] , ultracold 

toms trapped in a laser potential [20,21] , mesoscopic quantum 

ots [22,23] , the reflection of light from mirrors [24,25] , waveg- 

ides [26,27] , and microwave billiards [22,28,29] . Other examples 

f billiards can also be cited, for instance, elliptical [30,31] , stadium 

11] , and mushroom [7–9] . 

When we talk about billiards, one can cite studies that show a 

emiclassical transition from an elliptical to an oval billiard [32] . 

t is also possible to study the semiclassical treatment of diffrac- 

ion in billiard systems with a flux line [33] . Another interesting 

tudy shows the influence of corners in billiard systems, as done 

n Ref [34] . Reference [32] is specially important because shows 

https://doi.org/10.1016/j.chaos.2021.111707
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111707&domain=pdf
mailto:diogo.costa@unesp.br
https://doi.org/10.1016/j.chaos.2021.111707
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ome examples of bifurcations that occur in billiard systems. One 

oal of our paper is to explore some of these bifurcations, focus- 

ng on the direct and inverse parabolic bifurcations that occur in 

val-like billiards. 

We are going to consider a modified version of an oval-like bil- 

iard [1,3,6,35–37] . We demonstrate that two control parameters 

an completely change the dynamics of the system. In Section 2 , 

e show details about the model and describe some essential ini- 

ial considerations. Our intention here is to explore some conserva- 

ive generalized bifurcation diagrams (CGBD) [31,35,38,40] , where 

e go deeper into the study of these structures. These diagrams 

re composed of trees whose main stems are the periodic orbits 

resonances) and infinite ramifications, which are all rational tori 

higher-order resonances) surrounding the periodic orbits [38] . The 

GBD plots are important because one can find the direct and in- 

erse parabolic bifurcations. One can also highlight periodic, quasi- 

eriodic, and chaotic regions. To find the linear stability of the 

xed points, one could use some methods, like Greene’s residue 

39] , but, when using the CGBD, one can visually identify where 

he periodic orbits lose linear stability or duplicate. 

We show period-adding structures that have a non-trivial pat- 

ern that depends on the system and control parameters chosen. 

ur main contribution relies on the fact that, for billiards, one can 

btain the value of K/L , where K refers to the number of times the 

article reached the Poincar section, i.e., the number of times in 

hich the trajectory crossed Y = 0 . The second number L refers to 

he number of hits with the billiard boundary. With this in mind, 

e show some period-adding sequences of structures that appear 

nd accumulate in different regions. We also show several exam- 

les of trajectories to explain these periodic structures. 

In Sections 3 and 4 , we present results for different control pa- 

ameters’ values. We find some unusual orbits that are embedded 

n stochastic layers. These layers appear near saddle points, which 

s the mechanism for creating chaos in the system. We present fi- 

al remarks in Section 5 . 

. The model and considerations 

Let θ ∈ [0 , 2 π) and ε ∈ [0 , 1) be the angular position and am-

litude of the deformation, respectively. Then, we write the radius 

f the billiard boundary in polar coordinates as 

 (θ ) = 1 + ε cos ( pθ ) . (1) 

or ε = 0 , a circle billiard is recovered. The Cartesian position of 

he boundary is given by 

 b (θ ) = R (θ ) cos (θ ) , (2) 

 b (θ ) = R (θ ) sin (θ ) . (3) 

ig. 1 (a) displays a sketch of the billiard boundary for p = 2 and

= 0 . 2 . We consider that the particle starts its motion at (X, Y ) =
X 0 , Y 0 ) , wherein a first moment Y 0 = 0 . The particle’s trajectory

akes an angle μ0 , measured counterclockwise from the horizon- 

al line. Although the trajectory propagates clockwise, its angle is 

easured counterclockwise. Let V 0 be the initial particle’s veloc- 

ty and �t be the time variation. Then, the position of the particle 

X p , Y p ) is given by: 

 p = X 0 + V 0 cos ( μ0 ) �t, (4) 

 p = Y 0 + V 0 sin ( μ0 ) �t. (5) 

or simplicity, we set V 0 = 1 . We can also write the particle’s tra-

ectory as 

 p = Y 0 + tan ( μ0 ) ( X p − X 0 ) . (6) 
2 
To identify the interception of the particle’s trajectory with the 

illiard boundary, we solve a transcendental equation, considering 

 

X b ( θ1 ) , Y b ( θ1 ) ) = 

(
X p , Y p 

)
. After that, we find the new angular po- 

ition θ1 in which the particle touches the boundary. The particle’s 

rajectory is specularly rejected with constant velocity. 

Every time the particle’s trajectory crosses Y = 0 , we annotate 

he position X of the interception and the angle μ. For example, 

ig. 1 (a) shows that the particle intercepts Y = 0 in X 1 and X 2 with

ngles μ1 and μ2 . Therefore, the green dashed line (represented 

y Y = 0 ) is the Poincaré section. Figs. 1 (b) and 1 (c) display bil-

iard boundaries for p = 1 and p = 2 , respectively. We change the

alue of ε from 0 (circular boundary) to 0.9. Let εc = 

1 
1+ p 2 , then 

he billiard has some local negative curvatures when ε > εc . 

As we will show in the next sections, the dynamical properties 

re highly dependent on ε and p. 

. Results for p = 1 

To verify if an orbit is chaotic, we can use a critical observable 

amed Lyapunov exponent [41] . It is a practical tool that can quan- 

ify the average expansion or contraction rate of a small volume of 

nitial conditions. Let J i be the Jacobian matrix evaluated over an 

rbit that hits n times the billiard boundary and � j be the eigen- 

alues of M = 

∏ n 
i =1 J i . Then, the Lyapunov exponents [41] are de- 

ned as 

j = lim 

n →∞ 

1 

n 

ln 

∣
∣� j 

∣
∣, j = 1 , 2 . (7) 

n our simulations, we consider orbits that hit up to 10 4 times the 

illiard boundary. If λ → 0 , the orbit may have periodic behavior, 

hile for λ � 0 , the orbit may present chaotic behavior. 

Let us introduce the Conservative Generalized Bifurcation Di- 

gram (CGBD). These diagrams exhibit the location and different 

ifurcations (inverse and direct parabolic bifurcations [31] ), with- 

ut the necessity of calculating, for example, the Greene’s Residue 

39] . It contains infinite sub-diagrams with all rational/irrational 

ori from the periodic orbits. Results are remarkable and show self- 

imilar and generic bifurcation structure in conservative systems. 

ig. 2 displays CGBD plots for p = 1 . Due to the symmetries, we

onsider μ0 = π/ 2 to construct the CGBD plots and change X 0 and 

’s values. It is fair to say that when considering α = π/ 2 , it is

ossible to lose some periodic orbits that exist in different regions 

f the phase space. However, due to the symmetry of this billiard, 

ome periodic islands appear at the line α = π/ 2 . It is correct to

ay that this is a particular case, but we will still get similar behav- 

or, with the fractal behavior, when choosing other control param- 

ters combinations. If we take another value of α, it is still possible 

o see similar results, but slightly changed. 

In our simulations, we consider 1 0 0 0 different values of X 0 and

 0 0 0 different values of ε. For each pair (X 0 , ε) , we iterate an orbit

ntil it hits 10 4 times the billiard boundary and compute the Lya- 

unov exponent λ. We use a specific color palette to represent λ, 

ighlighted at the top of Fig. 2 . Regions with λ → 0 tend to have

lue or black colors, while higher values of λ are represented by 

ed, orange, or white colors. The white regions typically highlight 

haotic orbits, while black regions represent periodic motions. 

The periodic structures are located mainly in regions with 

ow ε values, as shown in Fig. 2 . We see that chaos dominates 

he dynamics for ε > 0 . 5 , i.e., almost all periodic islands are de-

troyed (losing linear stability). It is essential to observe that X 0 ∈ 

 

X min , X max ) , where [ X min , X max ] = [ X b (π ) , X b (0) ] . The black-colored 

egions in the left of X min and X max ’s right are regions not allowed

with no physical meaning because the particle is outside the bil- 

iard boundary). 

Fig. 2 (b) exhibits an enlargement in the orange rectangle B 

hown in Fig. 2 (a). We show, with more details, the apparent frac- 
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Fig. 1. (Color online) Sketch of an oval-like billiard, wherein item (a) we show an example of trajectory starting at ( X 0 , Y 0 ) = ( −0 . 65 , 0 ) . We set the control parameters as 

p = 2 and ε = 0 . 2 . Angle μ0 gives us the particle direction. In (b,c), we show billiard boundaries for different values of ε, wherein item (b) p = 1 while in (c) p = 2 . 

Fig. 2. (Color online) CGBD for p = 1 and μ0 = π/ 2 . The palette color shows the maximum Lyapunov exponent λ. We see numbers K/L separated by bars, where the first 

number K refers to the number of times the particle reached the Poincaré section, while the second number L refers to the number of hits with the billiard boundary. 
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al behavior of the CGBD. There is a clear organization pattern of 

he periodic structures. In this figure, we see numbers K/L sepa- 

ated by bars, where the first number K refers to the number of 

imes the particle reached the Poincaré section, i.e., the number of 

imes in which the trajectory crossed Y = 0 . In contrast, the second 

umber L , refers to the number of hits with the billiard boundary. 

or example, let us take the conditions that produce the trajectory 
3 
/L ≡ 4 / 9 in Fig. 2 (b), represented by the little cyan circle in the

oordinate (X 0 , ε) = (−0 . 4674 , 0 . 2816) . Fig. 3 (a) shows the corre-

pondent trajectory. To count the number of times that a particle 

rosses Y = 0 , we start in the second red circle (from left to right).

or μ0 = π/ 2 , the particle’s trajectory goes vertically to the top. 

n a clockwise direction, we count the number of times it crosses 

 = 0 until returning to the initial point. It reaches our Poincaré
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Fig. 3. (Color online) Examples of periodic trajectories for p = 1 . Trajectories in (a,b,c,d) are examples taken from Fig. 2 (b), representing rotational motion, while (e,f,g,h) are 

shown in Fig. 2 (c), representing librational motion. The numbers separated by bars ( K/L ) represent the number of times the particle reached the Poincaré section and the 

number of hits with the billiard boundary. 

Fig. 4. (Color online) Phase space for p = 1 and: (a) ε = 0 . 3586 ; (b) ε = 0 . 3888 . After a critical value, the island in (a) duplicates, creating the islands shown in (b). 
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0  
ection 4 times ( K = 4 ). However, it hits the billiard boundary nine

imes ( L = 9 ) before returning to the initial point. Then, this trajec-

ory is represented by 4 / 9 . It is essential to observe that this is a

eriodic behavior. 

Returning to Fig. 2 (b), we see trajectories that follow an inter- 

sting pattern. For example, we identify trajectories with K/L given 

y 4 / 9 , 4 / 11 , 4 / 13 , 4 / 15 , 4 / 17 , and so on. We add two units for the

alue of L while K remains equal to 4. This period-adding sequence 

onverges infinitely to X min . We observed a similar sequence for 

 = 8 , where we see trajectories with K/L equal to 8 / 15 , 8 / 17 , 8 / 19 ,

nd so on. 

Fig. 2 (c) shows an enlargement in the C region shown in 

ig. 2 (a). Here we see other period-adding sequences, where we 

ighlighted a sequence with constant values of K = 2 ( 2 / 3 , 2 / 5 ,

 / 7 , 2 / 9 , . . . ), K = 6 ( 6 / 11 , 6 / 13 , 6 / 17 , . . . ), and K = 10 ( 10 / 17 ,

0 / 19 , . . . ). All these period-adding sequences with constant K ac- 

umulate in X max . In the left corner of Fig. 2 (c), we see another

equence, now with K/L given by 4 / 6 , 6 / 9 , 8 / 12 , and so on. It adds

wo units to K and three units to L , i.e., it follows the period of the

ain structure 2 / 3 . Figure 2 (d) displays details inside the D rect-

ngle shown in Fig. 2 (c). We find that the periodic fixed point 2 / 3

oses the linear stability (becomes unstable/hyperbolic), and two 

ranches 4 / 6 are created. 

Fig. 3 shows examples of periodic trajectories. The trajectories 

 / 9 , 4 / 11 , 4 / 13 , and 4 / 15 (rotational motion) are taken from the

ittle cyan circles in Fig. 2 (b). In contrast, the trajectories 2 / 3 , 4 / 6 ,

 / 9 , and 8 / 12 (librational motion) are taken as the little brown
 t

4 
ircles in Fig. 2 (c). We are observing specifically Figs. 3 (e) and 

 (f), the trajectory 2 / 3 lost linear stability and created two 4 / 6

rajectories, as explained in Fig. 2 (d). ε = 0 . 3586 and ε = 0 . 3888

re the values of ε taken to construct the trajectories in Figs. 3 (e) 

nd 3 (f). Altogether, Figs. 4 (a) and 4 (b) display the corresponding 

hase space μ vs X , where each point represents the position and 

ngle in which the particle crosses Y = 0 (our Poincaré section). 

ig. 4 (a) exhibits a periodic island, wherein the center (red cross) 

as a fixed point with K/L = 2 / 3 . As K = 2 , we can say that this is

 period-2 fixed point, which means that we can observe another 

imilar island in other regions of the phase space. However, for vi- 

ual purposes, we decide to highlight only this one. After a criti- 

al ε value, the island in Fig. 4 (a) duplicates, creating the islands 

hown in Fig. 4 (b). The separation between these two islands in- 

reases when ε increases. It can be observed in Fig. 2 (d) by the 

wo branches that started to separate for higher ε values. When 

is slightly greater than 0.44, the two branches (or the two peri- 

dic islands shown before) lose linear stability, i.e., the islands in 

ig. 4 (b) will disappear. For greater values of ε, the chaos starts 

ominating the dynamics. 

. Results for p = 2 

Fig. 5 (a) shows the CGBD for p = 2 and μ0 = π/ 2 . For ε < εc =
 . 2 , a fixed point located at X 0 = 0 ( K/L ≡ 2 / 2 ) is stable, but it loses

he linear stability for ε > εc and becomes unstable (hyperbolic). 
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Fig. 5. (Color online) CGBD for p = 2 and μ0 = π/ 2 . The color palette shows the maximum Lyapunov exponent λ. We see numbers K/L separated by bars, where the first 

number K refers to the number of times the particle reached the Poincaré section, while the second number L refers to the number of hits with the billiard boundary. 

Fig. 6. (Color online) Examples of periodic trajectories for p = 2 . Trajectories in (a,b) are examples taken from Fig. 5 (a), while (c,d) are shown in Fig. 5 (b) and (e,f,g,h) are 

shown in Fig. 5 (c). The numbers separated by bars ( K/L ) represent the number of times the particle reached the Poincaré section and the number of hits with the billiard 

boundary, respectively. 

F
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t
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d
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t

or ε > 0 . 2 , two different fixed points are created, both with K/L ≡
 / 2 as well, and there is not a period-doubling bifurcation. 

Fig. 6 (a) exhibits the trajectory 2 / 2 before ε < εc , while 

ig. 6 (b) displays one of the trajectories 2 / 2 created for ε > εc . It

ouches the boundary in two distinct positions. One at a maximum 

named as Y m 

) and another at a minimum value of Y . We can find
 t

5 
 m 

by solving ∂ Y b /∂ θ = 0 , which leads to the following transcen-

ental equation 

 ( θ ) = −εp sin (pθ ) + X b (θ ) , (8) 

hat needs to be solved numerically for F ( θm 

) = 0 . In addition 

o that, one can find [ X m 

, Y m 

] = [ X (θm 

) , Y (θm 

) ] , which gives us 
b b 
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Fig. 7. (Color online) Examples of quasi-periodic trajectories for p = 2 . These are examples taken from Fig. 5 (b). 
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he coordinate of the Y ’s maximum value. For p = 2 and ε > εc ,

wo maximums, and two minimum values can be found. Fig. 5 (a) 

hows the values of X m 

found as dashed lines. In both branches, 

he period-2 fixed points momentarily lose the linear stability at 

≈ 0 . 5 , i.e., the periodic islands almost disappear but recover the 

inear stability for higher ε values. 

Fig. 5 (b) shows details of the main K/L ≡ 2 / 2 structure ob- 

erved around X 0 = 0 . On the left, we observe a sequence of

eriod-adding structures named 4 / 4 , 6 / 6 , 8 / 8 , 10 / 10 , and so on.

e add two units to the value of K and L , where the value of K

s equal to L , following the period of the main structure. We can 
ig. 8. (Color online) Examples of stochastic layers that appear for p = 2 . The blue poin

 8 shown in Fig. 5 (b). The value of ε for each panel is: (a) ε = 0 . 0169 ; (b) ε = 0 . 1197 ; (c)

a) X 0 = −0 . 26019 ; (b) X 0 = −0 . 1535 ; (c) X 0 = −0 . 34169 ; (d) X 0 = −0 . 38594 . (For interpre

eb version of this article.) 

6 
ee another more complex sequence in the right, where we see the 

eriod-adding sequence 2 / 6 , 6 / 10 , 10 / 14 , 14 / 18 , . . . . Here, the value

f K differs from L . We add four units to K as well to L . Fig. 5 (c)

isplays an enlargement in the C rectangle shown in Fig. 5 (b). 

ur intention here is to show details around the 4 / 4 structure. 

s shown in Fig. 5 (c), we verify a period-adding sequence start- 

ng from 20 / 20 . The next structures have periods 28 / 28 , 36 / 36 ,

 4 / 4 4 , . . . , which accumulate near the figure’s left-bottom corner. 

nother period-adding sequence is observed in the top-left cor- 

er, named as 6 / 6 , 10 / 10 , 14 / 14 , 18 / 18 , . . . , which accumulate in

he white region (chaotic region). We identify a fractal behavior 
ts in (a,b,c,d) represent, respectively, the initial conditions taken in Q 2 , Q 4 , Q 6 and 

 ε = 0 . 08025 ; (d) ε = 0 . 06038 . The X position of the red circles (all with Y = 0 ) is: 

tation of the references to colour in this figure legend, the reader is referred to the 
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[  
self-similar structures) that appears when successive zooms in 

re done. 

After applying an enlargement in the D rectangle shown in 

ig. 5 (b), we obtain Fig. 5 (d). We see more complex period-adding 

equences appearing. For instance, we find the sequence 6 / 10 , 

0 / 18 , 14 / 26 , . . . in the left and the sequence 6 / 14 , 10 / 22 , 14 / 30 ,

 . . in the right portion of the figure. Both sequences accumulate to 

he same point, where we add four units to K and eight units to L .

Fig. 6 shows examples of trajectories for p = 2 . As said before,

igs. 6 (a) and 6 (b) exhibits examples taken from Fig. 5 (a) before

nd after εc . The trajectories 4 / 4 and 6 / 6 in Figs. 6 (c) and 6 (d)

re taken from Fig. 5 (b). The trajectories 20 / 20 , 28 / 28 , 36 / 36 , and

 4 / 4 4 in Figs. 6 (e), 6 (f), 6 (g), and 6 (h) are taken from Fig. 5 (c),

here we highlight the evolution of the trajectories that follow the 

eriod-adding sequence. 

Observing again Fig. 5 (b), we highlight some special regions, 

amed Q 2 , Q 4 , Q 6 , and Q 8 . We explore the white regions that ap-

ear around the orange/red structures. For example, the trajec- 

ory Q 2 , in Fig. 5 (b), is highlighted in Fig. 7 (a). As one sees, this

rajectory starts at the left red circle, goes straight up (because 

0 = π/ 2 ), reaching twice the billiard and the Poincaré section. 

he trajectory returns to the initial point after two iterations with 

ur Poincaré section. However, the final angle is not the same as 

he original ( μ2 	 = π/ 2 ). Suppose we evolve this trajectory, for in-

tance, for eight iterations. In that case, we see that the particle’s 

rajectory returns to the initial after every two iterations. That is 

hy we named Q 2 , where the index represents the number of iter- 

tions until apparently returning to the initial point. Fig. 7 (c) dis- 

lays the trajectory Q 4 shown in Fig. 5 (b). This trajectory is not 

eriodic because the angle when returning to the initial point is 

rong. Fig. 7 (d) shows the evolution for 18 iterations. The trajec- 

ory Q 6 is shown in Figs. 7 (e) and 7 (f) for 6 and 18 iterations. Fi-

ally, the trajectory Q 8 is observed in Figs. 7 (g) and 7 (h) when it-

rating up to 8 and 24 times. The trajectories ( Q j ) are very special

nd occur for some special combinations of the control parameters 

nd initial conditions. 

Let us consider the control parameters and initial conditions 

hat produce Q 2 , Q 4 , Q 6 , and Q 8 . We can plot the complete phase

pace μ vs X , shown in Figs. 8 (a), 8 (b), 8 (c), and 8 (d). The tra-

ectories Q 2 , Q 4 , Q 6 , and Q 8 start in the blue circle, and these

rajectories are embedded in stochastic layers. The layers are re- 

ions where chaos starts emerging. When the value of the con- 

rol parameter ε is increasing, the surrounding periodic structures 

re continuously destroyed. These stochastic layers [30] are cre- 

ted near the saddle points (hyperbolic fixed point). The creation 

f those stochastic layers can explain why white regions (with high 

values) appear near Q j in Fig. 5 (b). 

. Conclusions 

In this paper, we explore conservative generalized bifurcation 

iagrams (CGBD), as well as phase space properties. These dia- 

rams show how complex billiards dynamics are, where one can 

nd duplication of the period, direct and inverse parabolic bifur- 

ations. Moreover, one can highlight periodic, quasi-periodic, and 

haotic regions. These plots display initial conditions versus non- 

inear parameters, and the color palette identifies the maximum 

yapunov exponent. In our simulations, we observe that periodic 

tructures are organized in period-adding logical sequences, fol- 

owing the main body’s period and accumulating in different re- 

ions. The structures shown have a fractal pattern. We obtained 

esults for p = 1 and p = 2 , but our results can be extrapolated

o other p values. For p = 1 , we verify that chaos dominates the 

ynamics for high enough values of ε. For p = 2 , we highlighted

ome unusual orbits that are embedded in stochastic layers. These 

ayers are essential to the dynamics because that chaos grows in 
7 
uch regions (near saddle points) after increasing the control pa- 

ameter’s value. In summary, the CGBD plot shows essential details 

bout the dynamics of billiard systems. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Diogo Ricardo da Costa: Conceptualization, Methodology, Soft- 

are, Formal analysis, Writing – original draft. André Fu- 

ita: Validation, Formal analysis, Writing – review & editing. 

ntonio Marcos Batista: Validation, Formal analysis, Writing – re- 

iew & editing. Matheus Rolim Sales: Validation, Formal analysis, 

riting – review & editing. José Danilo Szezech Jr: Validation, For- 

al analysis, Writing – review & editing. 

cknowledgments 

This study was possible by partial financial support from the 

ollowing Brazilian government agencies: Fundação Araucária, Na- 

ional Council for Scientific and Technological Development (CNPq), 

oordenação de Aperfeiçoamento de Pessoal de Nível Superior- 

rasil (CAPES), and São Paulo Research Foundation (FAPESP). DRC 

cknowledges Brazilian agencies FAPESP (2020/02415-7) and CNPq 

162944/2020-9). 

eferences 

[1] Berry MV . Regularity and chaos in classical mechanics, illustrated by three de- 

formations of a circular ‘billiard’. Eur J Phys 1981;2:91 . 

[2] Bunimovich LA . Physical versus mathematical billiards: From regular dynamics 
to chaos and back. Chaos 2019;29:091105 . 

[3] Oliveira DFM , D Leonel E . On the dynamical properties of an ellipticalo-
val billiard with static boundary. Commun Nonlinear Sci Numer Simulat 

2010;4:1092–102 . 
[4] Garcia R . Elliptic Billiards and Ellipses Associated to the 3-Periodic Orbits. Am 

Math Mon 2019;126:491–504 . 

[5] Bandres MA , Gutiérrez-Vega JC . Classical solutions for a free particle in a con-
focal elliptic billiard. Am J Phys 2004;72:810–17 . 

[6] Hansen M , Costa DRd , Caldas IL , Leonel ED . Statistical properties for an open
oval billiard: An investigation of the escaping basins. Chaos, Solitons & Fractals 

2018;106:355–62 . 
[7] Bunimovich LA . Mushrooms and other billiards with divided phase space. 

Chaos 2001;11:802–8 . 

[8] Bäker A , Ketzmerick R , Löck S , Robnik M , Vidmar G , Höhmann R , Kuhl U ,
Stöckmann HJ . Dynamical Tunneling in Mushroom Billiards. Phys Rev Lett 

20 08;10 0:174103 . 
[9] Costa DRd , Palmero MS , Méndez-Bermúdez JA , Iarosz KC , Szezech JD Jr ,

Batista AM . Tilted-hat mushroom billiards: Web-like hierarchical mixed phase 
space. Commun Nonlinear Sci Numer Simulat 2020;91:105440 . 

[10] Sinai YG . On the foundations of the ergodic hypothesis for a dynamical system 

of statistical mechanics. Dokl Akad Nauk 1963;153:1261–4 . 
[11] Bunimovich LA . Conditions of stochasticity of two-dimensional billiards Q17. 

Chaos 1991;1:187–93 . 
12] Robnik M . Classical dynamics of a family of billiards with analytic boundaries. 

J Phys A: Math Gen 1983;16:3971–86 . 
[13] Zanetti FM , Vicentini E , Luz MGEd . Eigenstates and scattering solutions for bil-

liard problems: A boundary wall approach. Ann Phys 2008;323:1644–76 . 

[14] Barnett AH , Betcke T . Quantum mushroom billiards. Chaos 2007;17:043125 . 
[15] de Menezes DD , Silva MJe , de Aguiar FM . Numerical experiments on quantum

chaotic billiards. Chaos 2007;17:023116 . 
[16] Deryabin MV , Pustyl’nikov LD . Generalized relativistic billiards. Regul Chaotic 

Dyn 2003;8:283–96 . 
[17] Deryabin MV , Pustyl’nikov LD . Exponential Attractors in Generalized Relativis- 

tic Billiards. Comm Math Phys 2004;248:527–52 . 
[18] Dembowski C , Gräf H-D , Heine A , Hofferbert R , Rehfeld H , Richter A . First Ex-

perimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Bil- 

liard. Phys Rev Lett 20 0 0;84:867–70 . 
[19] Bird JP . Recent experimental studies of electron transport in open quantum 

dots. Phys: Condens Matter, 1999;11:R413 . 
20] Friedman N , Kaplan A , Carasso D , Davidson N . Observation of Chaotic and Reg-

ular Dynamics in Atom-Optics Billiards. Phys Rev Lett 2001;86:1518 . 

http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0001
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0001
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0002
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0002
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0003
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0003
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0003
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0004
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0004
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0005
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0005
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0005
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0006
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0006
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0006
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0006
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0006
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0007
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0007
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0008
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0009
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0010
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0010
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0011
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0011
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0012
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0012
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0013
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0013
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0013
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0013
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0014
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0014
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0014
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0015
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0015
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0015
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0015
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0016
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0016
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0016
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0017
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0017
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0017
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0018
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0019
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0019
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0020
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0020
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0020
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0020
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0020


D.R. da Costa, A. Fujita, A.M. Batista et al. Chaos, Solitons and Fractals 155 (2022) 111707 

[  

[  

[  

[  

[

[  

[  

[  

[  

[

[  

[

[

[

[  

[  

[  

[

[

[  

[  
21] Andersen MF , Kaplan A , Friedman N , Davidson N . Stable islands in chaotic
atom-optics billiards, caused by curved trajectories. J Phys B: At Mol Opt Phys 

2002;35:2183 . 
22] Kim Y-H , Barth M , Stöckmann H-J , Bird JP . Wave function scarring in open

quantum dots: A microwave-billiard analog study. Phys Rev B 2002;65:165317 . 
23] Bird JP , Ferry DK , Akis R , Ochiai Y , Ishibashi K , Aoyagi Y , Sugano T . Periodic

conductance fluctuations and stable orbits in mesoscopic semiconductor bil- 
liards. Europhys Lett 1996;35:529–34 . 

24] Kotelnikov IA , Popov SS , Romé M . Photon neutralizer as an example of an open

billiard. Phys Rev E 2013;87:013111 . 
25] Harayama T , Shinohara S . Ray-wave correspondence in chaotic dielectric bil- 

liards. Phys Rev E 2015;92:042916 . 
26] Zanetti FM , Lyra ML , de Moura FABF , Luz MGEd . Resonant scattering states in

2D nanostructured waveguides: a boundary wall approach. Phys B: At Mol Opt 
Phys 2008;42:025402 . 

27] Nunes A , Zanetti FM , Lyra ML . Switching of transmission resonances in a

two-channels coupler: A Boundary Wall Method scattering study. Ann Phys 
2016;373:707–16 . 

28] Åawniczak M , Biaous M , Yunko V , Bauch S , Sirko L . Missing-level statistics
and analysis of the power spectrum of level fluctuations of three-dimensional 

chaotic microwave cavities. Phys Rev E, 2018;98:012206 . 
29] Dietz B , Klaus T , Miski-Oglu M , Richter A , Wunderle M . Partial Time-Rever-

sal Invariance Violation in a Flat, Superconducting Microwave Cavity with the 

Shape of a Chaotic Africa Billiard. Phys Rev Lett 2019;123:174101 . 
30] Leonel ED , Bunimovich LA . Suppressing Fermi Acceleration in a Driven Ellipti- 

cal Billiard. Phys Rev Lett 2010;104:224101 . 
8 
31] Costa DRd , Dettmann CP , de Oliveira JA , Leonel ED . Dynamics of classical
particles in oval or elliptic billiards with a dispersing mechanism. Chaos 

2015;25:033109 . 
32] Sieber M . Semiclassical transition from an elliptical to an oval billiard. J Phys 

A: Math Gen 1997;30:4563–96 . 
33] Sieber M . Semiclassical treatment of diffraction in billiard systems with a flux 

line. Phys Rev E 1999;60:3982 . 
34] Sieber M , Pavloff N , Schmit C . Uniform approximation for diffractive contribu- 

tions to the trace formula in billiard systems. Phys Rev E 1997;55:2279 . 

35] Costa DRd , de Carvalho RE . Dynamics of a light beam suffering the influ-
ence of a dispersing mechanism with tunable refraction index. Phys Rev E 

2018;98:022224 . 
36] Costa DRd , Dettmann CP , Leonel ED . Circular, elliptic and oval billiards in a

gravitational field. Commun Nonlinear Sci Numer Simulat 2015;22:731–46 . 
37] Costa DRd , Oliveira DFM , Leonel ED . Dynamical and statistical properties of a

rotating oval billiard. Commun Nonlinear Sci Numer Simulat 2014;19:1926–34 . 

38] Manchein C , Beims MW . Conservative generalized bifurcation diagrams. Phys 
Lett A 2013;377:789 . 

39] Dullin HR . Linear stability in billiards with potential. Nonlinearity 
1998;11:151–73 . 

40] Barrio1 R , Blesa F , Serrano S . Fractal structures in the Hénon-Heiles Hamilto-
nian. EPL, 20 08;82:10 0 03 . 

41] Eckmann JP , Ruelle D . Ergodic theory of chaos and strange attractors. Rev Mod

Phys 1985;57:617 . 

http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0021
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0021
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0021
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0021
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0021
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0022
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0022
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0022
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0022
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0022
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0023
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0024
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0024
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0024
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0024
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0025
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0025
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0025
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0026
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0026
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0026
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0026
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0026
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0027
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0027
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0027
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0027
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0028
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0029
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0030
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0030
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0030
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0031
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0031
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0031
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0031
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0031
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0032
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0032
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0033
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0033
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0034
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0034
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0034
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0034
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0036
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0036
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0036
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0037
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0037
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0037
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0037
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0038
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0038
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0038
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0038
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0039
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0039
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0039
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0040
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0040
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0041
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0041
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0041
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0041
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0042
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0042
http://refhub.elsevier.com/S0960-0779(21)01061-4/sbref0042

	Conservative generalized bifurcation diagrams and phase space properties for oval-like billiards
	1 Introduction
	2 The model and considerations
	3 Results for 
	4 Results for 
	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


