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A B S T R A C T

This work examines the dynamical states of coupled Hénon maps that arise due to the network’s coupling
configuration in a ring topology. The parameters for each individual node are selected in a way that
ensures the absence of stable attractors in phase space, such that in the event of synchronization across the
network, all maps exhibit divergence after a brief transient period. However, contrary to what one would
expect, we find that the coupled network demonstrates the ability to stabilize and produce non-divergent
dynamics, depending on the coupling strength and radius. Thus, the dynamical states observed following
the transient phase are exclusively a consequence of the network’s coupling. Using spatial recurrence matrix,
the study correlates nondivergent dynamics with parameter regions prone to chimera and incoherent states,
demonstrating multistability for certain coupling strengths and showing that individual nodes’ dynamics remain
close to the chaotic saddle of the uncoupled maps. The paper is organized to discuss the Hénon map, coupling
mechanisms, characterization of nondivergent states and dynamical switch states transitions.
1. Introduction

Networks are present in both physical and abstract realms, con-
necting everything from electrical grids to social relationships and
biological systems [1]. Networks of coupled maps, for instance, are
a widely studied type of spatially extended systems, characterized by
discrete space and time variables with continuous state variables [2,3].
These systems consist of local dynamical units that interact with each
other through a coupling structure in a complex topology. They have
been used in mathematical models to explore various phenomena,
including secure communication [4], image encryption [5], biological
neuronal networks [6–9] and spatiotemporal chaos [10]. In recent
years, it has become of great interest the understanding of the dynamics
of systems coupled according to a complex network topology. The
research in this area has found important phenomena such as cascade
effects [11], synchronization patterns [12], and chimera states [13,14].

Chimera states have the peculiar characteristic of presenting si-
multaneously coherent and incoherent behaviors in a network. This
curious phenomenon was first reported by Kuramoto and Battogtokh in
2002 [13], where under suitable conditions, peculiar patterns emerged
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in coupled phase oscillators. The combination of coherent and incoher-
ent states was named chimera states [14], referring to a creature in
Greek mythology composed of distinct animals. An interesting review
of chimera states applied in neuronal networks is presented in [15,
16]. Experiments with coupled mechanical oscillators are discussed
in [17,18], and chimera states in populations of nonlocally coupled
chemical oscillators are examined in [19,20]. Reports of the presence
of chimera states in SQUID metamaterial [21,22] indicate possible
application of this dynamical behavior. Another potential application
of coexistent states is the unihemispheric sleep in some aquatic mam-
mals and birds, where one cerebral hemisphere sleeps while the other
remains awake [23,24], as well as the similarities between the collapses
of chimera states and epileptic seizures, as pointed out by Andrzejak
et al. [25].

It has been shown that the chaotic saddle plays a role in the long-
term dynamics of networks of coupled maps, trapping trajectories for
times that may be arbitrarily long [26,27]. In this paper, we investigate
the dynamics of a network of coupled Hénon maps in a ring topology.
For the set of parameters used, the uncoupled Hénon map exhibits no
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Fig. 1. (a) The fraction of nondivergent initial conditions as a function of time for the
uncoupled Hénon map. We consider 𝑛0 = 108 initial conditions uniformly distributed
in a 104 × 104 grid. (b) The chaotic saddle (red) and its stable manifold (black). The
parameters used are 𝛼 = 1.5 and 𝛽 = 0.3. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

stable attractors and is divergent. Nevertheless, the coupled network
acts as a mechanism of stabilization and generation of nondivergent
dynamics depending on the coupling strength and radius. By the char-
acterization of the dynamic state using the method of spatial recurrence
matrix [28,29] we were able to relate the nondivergent dynamics
with the regions in parameter space more prone to the existence of
chimera and incoherent states. Furthermore, we show the existence
of multistability for some values of coupling strength and that the
individual node dynamics remain close to the chaotic saddle present
in the uncoupled maps phase space.

This paper is organized as follows. In Section 2, we introduce the
Hénon map and discuss the coupling mechanisms and some properties
of the divergent behavior for specific parameters. In Section 3, we de-
scribe the methodology to determine the different nondivergent states
and their dependence on the strength and radius of the coupling. In
Section 4, we analyze how the network can switch between dynamical
states and the crises of stabilized states. At last, Section 5 contains our
final remarks and conclusions.

2. Network model

In this paper, we investigate the dynamics of a network of 𝑁
identical Hénon maps coupled in a ring topology. The dynamics of the
2

nodes is given by
𝑥(𝑖)𝑡+1 = 𝐹𝑥

(

𝑥(𝑖)𝑡 , 𝑦(𝑖)𝑡
)

+ 𝜎
2𝑟𝑁

𝑖+𝑟𝑁
∑

𝑗=𝑖−𝑟𝑁

[

𝐹𝑥

(

𝑥(𝑗)𝑡 , 𝑦(𝑗)𝑡

)

− 𝐹𝑥

(

𝑥(𝑖)𝑡 , 𝑦(𝑖)𝑡
)]

,

𝑦(𝑖)𝑡+1 = 𝐹𝑦

(

𝑥(𝑖)𝑡 , 𝑦(𝑖)𝑡
)

,

(1)

where 𝑖 = 1, 2,… , 𝑁 , 𝑡 is the discrete-time, (𝑥(𝑖)𝑡 , 𝑦(𝑖)𝑡 ) is the 𝑖th node state
at time 𝑡, 𝐹𝑥(𝑥, 𝑦) = 1 − 𝛼 𝑥2 + 𝑦 and 𝐹𝑦(𝑥, 𝑦) = 𝛽 𝑥 are the equations of
the two-dimensional Hénon map, and 𝜎 and 𝑟 are the coupling strength
and coupling radius, respectively.

For parameters 𝛼 = 1.5 and 𝛽 = 0.3, the uncoupled Hénon map
exhibits a divergent behavior, in which a typical initial condition
diverges towards infinity after a few iterations. However, due to the
presence of a chaotic saddle, some initial conditions may remain a long
transient time in a chaotic regime before escaping towards infinity [30].
We characterize such a chaotic saddle through the average decay time.
We consider a number 𝑛0 of initial conditions inside the interval (𝑥, 𝑦) ∈
[−3, 3] × [−3, 3], and calculate the number of initial conditions, 𝑛(𝑡), that
remain inside the interval at time 𝑡. If there is a chaotic saddle in the
interval, 𝑛(𝑡) exhibits an exponential decay, 𝑛(𝑡) ∼ 𝑒−𝜅 𝑡, where 𝜅 is the
decay rate [Fig. 1(a)]. The average decay time is the reciprocal of 𝜅,
i.e., 𝜏 = 1∕𝜅. The chaotic saddle (red) and its stable manifold (black)
for the uncoupled Hénon map is shown in Fig. 1(b).

Next, we investigate the influence of the coupling on the dynamics
using the same parameters we have used for the uncoupled case, i.e.,
𝛼 = 1.5 and 𝛽 = 0.3. Due to the form of the coupling term in Eq. (1), if
the nodes of the network are synchronized, then the coupling function
will be zero and each map will behave as in the uncoupled case. As
there are no stable attractors, the system will diverge. The consequence
is that the only remaining dynamic states observed in the network will
be due to the network coupling.

For the network, we select random initial conditions in the interval
(𝑥, 𝑦) ∈ [−0.1, 0.1] × [−0.1, 0.1] and following our previous analysis, we
investigate the behavior of 𝑛(𝑡) as a function of 𝑡 and the coupling
strength, 𝜎, for distinct values of the coupling radius, 𝑟 (Fig. 2), namely,
(a) 𝑟 = 0.05, (b) 𝑟 = 0.10, (c) 𝑟 = 0.15, (d) 𝑟 = 0.20, (e) 𝑟 = 0.25, (f)
𝑟 = 0.30, (g) 𝑟 = 0.35, (h) 𝑟 = 0.40, (i) 𝑟 = 0.45, and (j) 𝑟 = 0.50.

Depending on the combination of 𝜎 and 𝑟, the network exhibits
very different dynamics. For instance, for 𝜎 ≈ 0, all initial conditions
diverge, as expected, due to the weak coupling. For large values of 𝜎
and 𝑟, all initial conditions diverge as well. The interesting nontrivial
dynamics occurs for intermediate values of 𝜎 and 𝑟. We notice that for
all values of 𝑟 and 𝜎 ⪅ 0.38, no initial conditions diverge (gray color) at
least until 𝑡 = 5000. However, it is observable from Fig. 2 that most of
the color scales have a flat profile, so we do not expect any significant
modifications for larger 𝑡. We also emphasize that we do not observe
transients of chimera states or a collapse of such states, even for larger
times. Our guess is that, despite the finite size of our network, the size
𝑁 = 1000 in our simulations results in very long times or even infinity
to reach collapses. This is in agreement with the results of Wolfrum
and Omel’chenko [31], where for continuous-time systems, the average
lifetimes of chimera states increase exponentially with the size of the
network. As 𝑟 increases and the network approaches global coupling
(𝑟 = 0.5), about 10% of the initial conditions start to diverge (red color).
On the other hand, for small values of 𝑟, a substantial number of initial
conditions diverge for large 𝜎 while the remaining stay on the interval
and 𝑛(𝑡) reaches a constant value (up to 5000 iterations). Therefore,
the dynamics is highly nontrivial on the parameters 𝜎 and 𝑟. In order
to investigate which parameter set results in more nondivergent initial
conditions, we calculate 𝑛(𝑡) at 𝑡 = 5000 in the parameter space 𝜎 × 𝑟
(Fig. 3).

We observe a wide range of parameter values where no initial condi-
tions diverge towards infinity (gray color). In contrast, there are regions
where all initial conditions diverge. These regions are interspersed with
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Fig. 2. The fraction 𝑛(𝑡)∕𝑛0 of nondivergent initial conditions as a function of time for the network, Eq. (1), for changing coupling strength 𝜎 with (a) 𝑟 = 0.05, (b) 𝑟 = 0.10, (c)
𝑟 = 0.15, (d) 𝑟 = 0.20, (e) 𝑟 = 0.25, (f) 𝑟 = 0.30, (g) 𝑟 = 0.35, (h) 𝑟 = 0.40, (i) 𝑟 = 0.45, and (j) 𝑟 = 0.50. The parameters used are 𝑁 = 1000, 𝑛0 = 103, 𝛼 = 1.5, and 𝛽 = 0.3.
Fig. 3. The fraction of nondivergent initial conditions for the network, Eq. (1), at
𝑡 = 5000 for a grid of 500 × 500 values of (𝑟, 𝜎). The parameters used are 𝑁 = 1000,
𝑛0 = 103, 𝛼 = 1.5, and 𝛽 = 0.3.

areas where only some initial conditions diverge. Hence, we observe a
stabilization of the divergent dynamics of the uncoupled system due
to the coupling. The top right corner of Fig. 3 is the region where
usually takes place the synchronization of the network, with the bounds
of the parameter values for synchronization being determined by the
method of the master stability function [32]. However, in order to
determine these parameter values it is necessary a trajectory in the
synchronization manifold. This trajectory cannot be obtained for the
parameters of the Hénon map used here, as there is no stable attractor
and all trajectories are unbounded. Moreover, the diagram shown in
Fig. 3 remarkably resembles diagrams with regions of coherence such
as the one shown in Figure 1 of Ref. [33], for example. In our case,
however, it remains unclear which configurations and dynamical states
of the network correspond to each region in the diagram 𝜎 × 𝑟. In
Section 3, we present the extended version of spatial recurrence matrix
to characterize the dynamical states of our network [28,29].

3. Characterization of the network dynamical states

A large variety of approaches already exist for the quantification
of dynamical states, particularly with regard to chimera-like patterns.
These approaches include the local order parameter [33–35], the
strength of incoherence [36], the spatial inverse participation ra-
tio [37], the normalized probability density function of the discrete
Laplacian [38], among others. Specifically, Kemeth and collaborators
3

also proposed a scheme to classify chimera states [38]. As each ap-
proach has its strengths and weaknesses, our study uses an approach
based on the binary distance matrix, introduced by Santos and col-
laborators [39] as a modification of the eigenvalue decomposition
method [40]. The chosen method contrasts with those mentioned
above, as it identifies coherent nodes that are not close neighbors and
does not require the computation of eigenvalues and eigenvectors, thus
reducing computation time.

Given the node’s state variables time series 𝐱(𝑖)𝑡 = (𝑥(𝑖)𝑡 , 𝑦(𝑖)𝑡 )𝑇 , we
construct the symmetric spatial distance matrix 𝐝 according to
𝑑𝑖𝑗 =

⟨

‖

‖

‖

𝑥(𝑖)𝑡 − 𝑥(𝑗)𝑡
‖

‖

‖

⟩

𝑡
, (2)

where ‖⋅‖ is the Euclidean norm, ⟨⋅⟩𝑡 denotes the average in time, and
𝑖, 𝑗 = 1, 2,… , 𝑁 . If nodes 𝑖 and 𝑗 are coherent with each other, 𝑑𝑖𝑗 ≈ 0,
and large values of 𝑑𝑖𝑗 indicate incoherence. By computing the binary
distance matrix as

𝐿𝑖𝑗 = 𝐻(𝑑𝑖𝑗 − 𝜀), (3)

with 𝜀 > 0 being a small threshold and 𝐻(⋅) is the Heaviside unit step
function, we assign the value ‘1’ for the coherent nodes and the value ‘0’
for the incoherent ones. In other words, if the mean distance between
𝑥(𝑖) and 𝑥(𝑗) in some time interval is smaller than 𝜀, 𝐿𝑖𝑗 equals 1 and
zero otherwise. This particular definition of 𝐿𝑖𝑗 resembles the definition
of the recurrence matrix used in recurrence quantification analysis
(RQA) [41–46]. However, in RQA, the recurrence matrix is constructed
using the time series of the state variables, whereas in our case, we
compute 𝐿𝑖𝑗 using the state variables of the nodes in the network. Such
a definition is often called spatial recurrence matrix [28,29].

For a completely incoherent state, the matrix 𝐋 takes on the form of
the identity matrix. When there is coherence among certain nodes, spe-
cific off-diagonal elements of 𝐋 become non-zero, and when the state is
entirely coherent, all elements of the matrix 𝐋 are one. Therefore, one
can distinguish among these different states by applying the following
methodology:

1. Sum the elements of each column of the matrix 𝐋: 𝑠𝑗 =
∑

𝑖 𝐿𝑖𝑗 , for
𝑖, 𝑗 = 1, 2,… , 𝑁 . If the 𝑗th node is incoherent with the rest of the
network, then 𝑠𝑗 = 1, as all column elements are zero except for
the diagonal element. If there is coherence with another node,
then 𝑠𝑗 > 1.

2. Apply the sign function on the sum of each column as 𝑆𝑖 =
sign(𝑠𝑖 − 1). This function assigns the value 1 to the coherent
nodes, as 𝑠𝑖 > 1, and the value 0 for the incoherent ones.

3. Sum the elements of 𝐒: 𝐶 =
∑

𝑖 𝑆𝑖, where 𝐶 = 𝑁 represents
cluster synchronization and 𝐶 = 0 shows that all the nodes
are desynchronized. A coherence–incoherence state, also called
a chimera state, is characterized by intermediate values of 𝐶,
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Fig. 4. (Black) The snapshot of 𝑥(𝑖)𝑡 at 𝑡 = 5000 and (red) the vector 𝐒 (1st row) and the spatio-temporal evolution of 𝑥(𝑖)𝑡 (2nd row) of Eq. (1), the distance matrix (3rd row), and
the binary distance matrix (4th row) for (a) (𝑟, 𝜎) = (0.15, 0.50), (b) (𝑟, 𝜎) = (0.45, 0.25), (c) (𝑟, 𝜎) = (0.30, 0.22), (d) (𝑟, 𝜎) = (0.30, 0.25), and (e) (𝑟, 𝜎) = (0.10, 0.10). The parameters used
are 𝑁 = 1000, 𝜀 = 7.5𝛿∕100, where 𝛿 is the standard deviation defined in the main text, 𝛼 = 1.5, and 𝛽 = 0.3. The cases (a) and (b) shows examples of states with 𝐶 = 𝑁 , the cases
(c) and (d) shows examples of states with 0 < 𝐶 < 𝑁 and the case (e) shows an example of a state with 𝐶 = 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
0 < 𝐶 < 𝑁 , i.e., 𝐶 nodes belong to synchronized clusters and
𝑁 − 𝐶 nodes are desynchronized.

To obtain 𝐋, it is necessary to define the threshold 𝜀 in (3). This
parameter has to be chosen carefully as if 𝜀 is chosen too large, almost
every node is coherent with every other node. On the other hand, if 𝜀 is
chosen too small, this analysis will result in almost no coherent nodes
in the network, even if they are indeed spatially coherent, and we can
extract no information from 𝐋. Therefore, the choice of 𝜀 has to be a
compromise between having 𝜀 as small as possible and at the same time
not too small so that there will be no coherent nodes. Regarding RQA,
several rules of thumb have been proposed [47–49], but one of them
is particularly interesting for taking into account the data dispersion:
the threshold is considered to depend upon the standard deviation of
the data series [44,50–52]. Here, we consider the standard deviation
of the time series 𝑥(𝑖)𝑡 of each individual node, resulting in a standard
deviation vector 𝜹 = (𝛿1, 𝛿2,… , 𝛿𝑁 ). We define the threshold to be 7.5%
of the mean value of 𝜹, i.e.,

𝜀 = 7.5
100

𝛿 , (4)

where 𝛿 = 1
𝑁

∑𝑁
𝑖=1 𝛿𝑖. For a discussion regarding the effect of the

threshold 𝜀 on our results, see Appendix A.
We apply this methodology to the states shown in the first two rows

of Fig. 4. The last two rows of Fig. 4 show the distance matrix 𝐝 and the
binary matrix 𝐋, respectively. For the first two states, (a) and (b), every
node is coherent with at least one other node of the network. Hence
𝑆𝑖 = 1 for all 𝑖 = 1, 2,… , 𝑁 , 𝐶 = 𝑁 and we observe coherent states. For
states (c) and (d), we identify several incoherent nodes coexisting with
coherent ones. In these cases 0 < 𝐶 < 𝑁 holds as 𝑆𝑖 = 0 for some nodes,
and we observe coherence–incoherence states. The remaining state, (e),
corresponds to an incoherent state, with 𝑆𝑖 = 0 for all 𝑖 and 𝐶 = 0.

Therefore, using the proposed methodology, we can accurately char-
acterize the dynamical states of our network. In order to analyze which
configuration and state correspond to each region in the parameter
space 𝜎×𝑟, we divide this space into a 300 × 300 grid, and for each pair
(𝜎 , 𝑟), we consider 𝑛0 = 103 initial conditions and apply the described
methodology to each one of them. We plot the fraction of initial
4

conditions that converge to each state in Fig. 5. Note that Fig. 5(a) and
Fig. 3 are the same, First, for values of 𝜎 above 𝜎𝑐 ≈ 0.53, which marks
the end of the incoherence–coherence transition, the initial conditions
either diverge or correspond to coherent states. This 𝜎𝑐 was analytically
determined for a network of identical coupled Hénon maps [53,54] as
𝜎𝑐 = 1 − 1∕|𝛽 + 2𝛼 𝑥∗|, where 𝑥∗ is the fixed point of the map. This value
corresponds to the point where the smooth profile breaks up and the
spatial derivative becomes infinite.

An exception exists in a small region in Fig. 5(c) near the line 𝜎 = 𝜎𝑐
that our methodology identifies as coherence–incoherence states. This
misidentification is due to numerical artifacts, such as the finite size of
our network. Increasing the network size will eliminate these erroneous
detections. However, these incorrectly identified states constitute only
a small fraction of our total number of initial conditions and they do
not influence our analysis. For 𝜎 < 𝜎𝑐 , the network exhibits all three
nondivergent possible states, i.e., coherence, coherence–incoherence
and incoherence.

Therefore, different initial conditions exhibit very distinct dynamics
and final states. Furthermore, even though the uncoupled dynamics
is divergent, when we turn on the coupling, the dynamics stabilizes
even for small coupling strength and radius. Additionally, divergent,
coherent, and coherent–incoherent states coexist for the same param-
eter values, and, interestingly enough, divergent and incoherent states
do not coexist. In Section 4 we analyze the transitions between these
different dynamical states depending on the direction of the parameter
change.

4. Hysteresis and multistability of the stabilized states

To analyze how the network switches its dynamical state among all
possible states, we select a fixed random initial condition and fix the
coupling radius as 𝑟 = 0.25. Next, we vary the coupling strength in the
interval 𝜎 ∈ [0.12, 0.30] in both directions following the dynamical state,
i.e., for each new parameter value, the initial condition corresponds to
the last state of the previous value of 𝜎. We also calculate the final state
for each 𝜎 value and plot the Single-node orbit diagram with colored
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Fig. 5. Fraction of initial conditions that converges to each state in the parameter 𝜎 × 𝑟 for the network, Eq. (1), with 𝑁 = 1000, 𝑛0 = 103, 𝛼 = 1.5, and 𝛽 = 0.3. The dashed white
horizontal line in (c) corresponds to the transition value 𝜎𝑐 = 0.53 that marks the coherence–incoherence transition. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 6. Single-node orbit diagram with (a) increasing 𝜎 and (b) decreasing 𝜎 with 𝑟 = 0.25, 𝑁 = 1000, 𝛼 = 1.5, and 𝛽 = 0.3. We plot the 𝑦 variable of the 500th node and we color
the point according to the state of the network. For a completely coherent (incoherent) state, we color the point blue (black). When coherent and incoherent nodes coexist, we
color the point red. The green dashed vertical lines correspond to the values of 𝜎 we plot the phase space of the network (Fig. 7). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
points (Fig. 6). For a completely coherent (incoherent) state, we color
the point blue (black). If coherent and incoherent nodes coexist, we
color the point red.

In Fig. 6(a) we observe the dynamical behavior of node 𝑖 = 500 when
the coupling parameter increases, and in Fig. 6(b) when the coupling
parameter decreases. It must be noted that this is not a single-node orbit
diagram in the classical sense of dynamical systems, i.e. for 𝜎 = 0.175
it could be wrongly concluded that the system is in a periodic orbit
of period 8, however, we are only seeing one node of the network,
while other parts of the network, in the incoherent region, present
nonperiodic dynamics and is marked with red (coherent and incoherent
coexistence). Comparing Figs. 6(a) and (b) we can clearly see the
existence of multistability in the network so that the final dynamical
state is different whether the 𝜎 parameter is increasing or decreasing.

The five green dashed vertical lines in Fig. 6 correspond to the
values of 𝜎 for which we plot the ‘‘phase space’’ of the network (Fig. 7),
i.e., we plot the values of 𝑥 and 𝑦 for all nodes of the network and
we color the point blue (red) if the node is coherent (incoherent). In
Fig. 7(a) both the states are completely incoherent (red). For a larger
value of 𝜎 [Fig. 7(b)], both states exhibit coherent and incoherent
nodes (blue and red). For the cases in Figs. 7(c) and 7(d), the state
obtained increasing 𝜎 is a completely coherent state (blue), whereas
the state obtained decreasing 𝜎 exhibits both coherent and incoherent
5

nodes (blue and red). Finally, the states in Fig. 7(e) correspond to
the same dynamical state, i.e., completely coherent (blue), however
with two distinct attractors positions. To analyze how the nodes are
distributed in phase space, we divide it in a grid of 1000 × 1000
boxes and we count the number of times a box has been occupied.
In Fig. 8 we plot the phase space and the occupancy for 𝜎 = 0.174
obtained by varying 𝜎 in both directions. We notice regions with
larger occupancy [green to red color in Figs. 8(b) and 8(d)] and these
regions correspond to the location of the coherent nodes [blue points
in Figs. 8(a) and 8(c)]. We also plot the phase space and the occupancy
for values of 𝜎 varying in the interval 𝜎 ∈ [0.12, 0.30] in both directions
(ascending and descending order) in Supplementary Videos forward.avi
and backward.avi. This clustering of nodes in specific regions in phase
space repeats for all values of 𝜎 that exhibit coherent nodes.

5. Conclusions

In this paper, we have analyzed the dynamics of a network of 𝑁
identical Hénon maps coupled in a ring topology. The uncoupled Hénon
map is known to exhibit divergent behavior for specific parameter
values and we have chosen our set of parameters in such a way that
the uncoupled case is divergent. We have found that depending on the
value of the coupling strength 𝜎 and the coupling radius 𝑟, the network
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Fig. 7. The phase space of the network for different values of 𝜎 with (top row) increasing 𝜎 and (bottom row) decreasing 𝜎. We plot the 𝑥 and 𝑦 positions of each node after the
transient and we color in blue (red) the coherent (incoherent) nodes. The green dashed vertical lines in Fig. 6 correspond to the values of 𝜎, namely, (a) 𝜎 = 0.13, (b) 𝜎 = 0.17,
(c) 𝜎 = 0.18, (d) 𝜎 = 0.21, and (e) 𝜎 = 0.26. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. (a) and (c) The phase space of the network and (b) and (d) the occupancy for
𝜎 = 0.174 and 𝑟 = 0.25 with (top row) ascending order and (bottom row) descending
order. We plot the 𝑥 and 𝑦 positions of each node after the transient and we color in
blue (red) the coherent (incoherent) nodes and divide the phase space into a grid of
1000 × 1000 boxes and count the number of time each box was visited (occupancy).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

exhibits nondivergent dynamics. This counterintuitive behavior for the
chosen parameter values is a consequence of the network coupling that
stabilizes the divergent dynamics, being a collective phenomenon that
could not be predicted only from the analysis of its composing parts.

Additionally, using an extended version of the spatial recurrence
matrix, we have accurately characterized the dynamics of the network,
where we have identified three distinct nondivergent states, namely,
completely coherent and completely incoherent states and also coexist-
ing coherent and incoherent nodes. We have found that for the same
coupling strength and radius, different states coexist and have different
spatial distributions in phase space. Moreover, by dividing the phase
space into boxes and counting the number of times a box has been
occupied along the time evolution of the network, we have found
that regions with higher occupancy correspond to the location of the
6

coherent nodes. Although we focused on the dynamics of a discrete-
time network (mainly due to computational limitations), we strongly
believe that our findings apply to continuous-time networks also, due
to the similarities in the dynamics of both systems.

All the presented results were obtained for a network of 𝑁 = 1000
nodes, however, an interesting future work would be to identify a
minimal network where an analytical approach could be feasible to
determine the transition states.
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Fig. A.9. Fraction of initial conditions that converges to each state as a function of
the threshold 𝜀 for the network (1) with 𝑁 = 1000 and 𝑟 = 0.25 for (a) 𝜎 = 0.30, (b)
𝜎 = 0.32, and (c) 𝜎 = 0.34. The parameters used are 𝛼 = 1.5, and 𝛽 = 0.3. The color
code used is black for incoherent states (I), red for coherence–incoherence states (C/I),
blue for coherent states (C), and white for divergent states (D). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Appendix A. The effect of the threshold on the coherence/
incoherence detection

In Section 3, we introduced the binary matrix 𝐋 in terms of the dis-
tance matrix 𝐝 and the threshold 𝜀 [Eq. (3)]. We defined the threshold
to be 7.5% of the standard deviation vector 𝜹 mean value. In order
to analyze the effect of 𝜀 on the coherence/incoherence detection,
we consider fixed values for the coupling radius (𝑟 = 0.25), different
coupling strength and choose 104 random initial conditions on the
interval [−0.1, 0.1] × [−0.1, 0.1]. We calculate the basin stability [55–57],
i.e., the fraction of these initial conditions that converge to each of the
four possible states, as a function of the threshold 𝜀 (Fig. A.9).

If the threshold is too small (𝜀 ∼ 1%𝛿), we detect almost no coherent
states, and as 𝜀 grows larger, the number of coherent states grows as
well, as expected. The rise is sharpest for large values of 𝜀. However,
there is an interval of values of 𝜀 in which the proportion of coherent
and coherence–incoherence states does not change significantly (𝜀 ∈
[5%𝛿 , 10%𝛿]). Therefore, there is in fact a whole range of values of 𝜀
which yields good results.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.chaos.2025.116115.
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