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ABSTRACT

An interesting feature in dissipative nonlinear systems is the emergence of characteristic domains in parameter space that exhibit periodic
temporal evolution, known as shrimp-shaped domains. We investigate the parameter space of the dissipative asymmetric kicked rotor map
and show that, in the regime of strong dissipation, the shrimp-shaped domains repeat themselves as the nonlinearity parameter increases
while maintaining the same period. We analyze the dependence of the length of each periodic domain with the nonlinearity parameter,
revealing that it follows a power law with the same exponent regardless of the dissipation parameter. Additionally, we find that the distance
between adjacent shrimp-shaped domains is scaling invariant with respect to the dissipation parameter. Furthermore, we show that for weaker
dissipation, a multistable scenario emerges within the periodic domains. We find that as the dissipation gets weaker, the ratio of multistable
parameters for each periodic domain increases, and the area of the periodic basin decreases as the nonlinearity parameter increases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0233324

The study of the parameter space of dissipative nonlinear

dynamical systems reveals a rich and complex structure between

periodic and chaotic behavior. One particularly interesting struc-

ture observed in these systems is the so-called shrimp-shaped

domains. They are periodic regions embedded in chaos and have

been identified in a variety of dynamical systems as well as in

experimental realizations. In this paper, we study the dissipative

asymmetric kicked rotor map and examine the formation of these

shrimp-shaped domains as both the nonlinearity and asymme-

try parameters are varied. Our results reveal a scaling relation

between the length of the shrinking shrimp-shaped domains and

the nonlinearity parameter in the regime of strong dissipation

as well as the emergence of multistable scenarios for specific

parameter values as the dissipation gets weaker.

I. INTRODUCTION

In general, dissipative nonlinear dynamical systems depend on
different parameters that influence and determine the nature of
their solutions. As these parameters change, the system can undergo
transitions known as bifurcations. This topic has been extensively
studied in both theoretical1–10 and experimental frameworks.11–16 We
refer the reader to Refs. 17–19 for a detailed discussion on bifurca-
tion theory and applications. A significant discovery was made by
Feigenbaum20,21 in the late 1970s. He identified a universal constant,
now known as the Feigenbaum constant (δ ≈ 4.669 201 609), that
characterizes the route to chaos via period-doubling bifurcations.
Although this constant was initially derived for one-dimensional
mappings, it is found in a wide range of dynamical systems22–25 and,
hence, its universal character.
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When analyzing bifurcations in two-dimensional parameter
spaces, an interesting feature of dissipative systems emerges: the
so-called shrimp-shaped domains.26,27 These are self-similar, isope-
riodic stable structures consisting of periodic windows embedded
into quasi-periodic or chaotic regions. While the existence of self-
similar periodic structures had been noted in different systems,28–31

it was the pioneering work of Gallas26 on the parameter space of
the Hénon map that brought significant attention to these shrimp-
shaped domains. Since then, these domains have been observed in
multiple mathematical models, such as a CO2 laser model,32 the
Rössler system,33 the kicked logistic map,34 a 3D generalization of
the Hénon map,35 a two-gene system,36 and a non-ideal Duffing
oscillator,37 to cite a few. The shrimp-shaped domains have also been
identified in experimental studies involving electronic circuits.38–40

The plethora of dynamical systems that exhibit such a peculiar struc-
ture leads to the belief that they are a universal feature of dissipative
dynamical systems.

One dissipative nonlinear system that has been extensively
studied is the dissipative version of the standard map (also known
as the Chirikov–Taylor map)41 and referred to as dissipative stan-
dard mapping.42 Despite its simple mathematical form, this system
displays all the characteristics typical of nonlinear dynamical sys-
tems. Initial studies focused on the transition from quasi-periodicity
to chaos43–46 and from Hamiltonian to dissipative dynamics.47

The shrimp-shaped domains have been identified in the dissipa-
tive standard mapping,23,48 and the thresholds at which invari-
ant attractors break have been calculated.49 Researchers have also
addressed the transport of chaotic particles, including the iden-
tification of superdiffusion50 and the identification of a universal
empirical function for describing chaotic particle diffusion under
weak dissipation.51 Further research has explored generalizations
of this mapping, including fractional52 and relativistic versions.53–56

Additionally, some analytical analyses have been conducted.57,58

In this paper, we consider the asymmetric version of the dis-
sipative standard mapping.59 It has been proposed for the study
of the transport of particles, and the addition of asymmetry leads
to a strong ratchet current,59–61 which is the directed transport of
particles without an external bias force, even for slightly asymmet-
ric potentials.62 Previous studies of this system have revealed a rich
structure in the parameter space consisting of nonlinearity parame-
ter k and dissipation parameter γ .60,61 We, on the other hand, seek to
describe its two-dimensional parameter space consisting of the non-
linearity parameter k and the asymmetry parameter a. We identify a
distinctive cascade of shrimp-shaped domains as k grows larger and
obtain a scaling relation between their lengths and the parameter
k. We also find that the distance between adjacent shrimp-shaped
domains is scaling invariant with respect to the dissipation. Addi-
tionally, we identify specific parameter combinations that result in a
multistable scenario within the periodic domains as the dissipation
decreases.

This paper is organized as follows. In Sec. II, we describe
the system under study and present some of its properties. In
Sec. III, we analyze the cascade of shrimp-shaped domains in param-
eter space for large values of the nonlinearity parameter, and in
Sec. IV, we identify and analyze the multistability within the peri-
odic structures. We show that the multistability scenario is more
prominent for weaker dissipation. We also demonstrate that as the

nonlinearity parameter increases, the size of the periodic basins
decreases. Section V contains our final remarks.

II. THE MODEL

In this paper, we study a periodically kicked rotor subjected to
an asymmetric harmonic potential. The canonical variables are the
momentum pn and the angular position xn of the rotor just after the
nth kick. The dynamics is given by the dissipative asymmetric kicked
rotor map (DAKRM),59,60,62

pn+1 = (1 − γ ) pn + k
[

sin(xn) + a sin
(

2xn +
π

2

)]

,

xn+1 = xn + pn+1 mod 2π ,
(1)

FIG. 1. (a) The largest Lyapunov exponent and (b) the isoperiodic diagram in
parameter space k × a with γ = 0.80. In (a), blue to black (pink to white) color
corresponds to periodic (chaotic) dynamics, whereas purple color (vanishing λ1)
marks the bifurcation points. In (b), the colored regions correspond to different
periods in the periodic domains and the white region corresponds to chaotic
dynamics. The red dashed rectangles labeled from A to D correspond to the mag-
nifications shown in Fig. 2. The initial condition is chosen as (x0, p0) = (1.78, 0.0)
for all values of (a, k).
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where k > 0 corresponds to the kick strength, γ ∈ [0, 1] is the dis-
sipation parameter, and for a 6= 0, the spatial symmetry is broken.
For a = 0, the dissipative standard mapping43–46 is recovered, and
the limiting cases γ = 0 and γ = 1 correspond to Hamiltonian and
overdamping dynamics, respectively.

We are interested in the regime of strong dissipation and con-
sider, at first, γ = 0.80. We analyze the nature of the solutions and
the different dynamical behaviors that emerge for different param-
eter values. In order to do so, we calculate the largest Lyapunov
exponent63–65 in the parameter space k × a for fixed γ . Given a map-
ping M : R

d → R
d, defined as xn+1 = M(xn) = Mn(x0), let DMn be

the n iterate of the Jacobian matrix. The Lyapunov exponents are
defined as66

λi = lim
n→∞

1

n
ln (‖DMnui‖) , (2)

where i = 1, 2, . . . , d and ui is the eigenvector corresponding to the
ith eigenvalue of DMn. In our case, the system is two-dimensional,
d = 2, and we have two exponents that satisfy λ1 ≥ λ2. We charac-
terize the dynamics using the largest Lyapunov exponent, λ1. The
dynamics is periodic when λ1 < 0. Chaotic dynamics, on the other
hand, is characterized by λ1 > 0. Thus, we divide the parameter
space (a, k) ∈ [0, 1] × [0, 30] into a grid of 1000 × 1000 boxes and
calculate the largest Lyapunov exponent, λ1 [Fig. 1(a)]. We also
count the period for each pair of points in the grid [Fig. 1(b)]. For
all our simulations, we consider a fixed initial condition (x0, p0)

= (1.78, 0.0) and a transient time of 5 × 104 and calculate λ1 using
the next 5 × 104 iterations.

The parameter space in Fig. 1 shows chaotic (orange to white
color) and regular (blue to black color) regions non-trivially inter-
twined. By changing one parameter while keeping the other fixed,
or even by changing both simultaneously, we observe that a chaotic

dynamics region shifts to periodic dynamics, which then shifts back
to chaotic dynamics, thus creating periodic windows. These peri-
odic windows form the so-called shrimp-shaped domains, which
are periodic regions in parameter space surrounded by chaotic
regions.26,27,29,34 There are also values of (a, k) where λ1 approaches
zero (purple color). These are bifurcation points, and to analyze
these bifurcations in further detail, we perform the same simula-
tions for the regions bounded by the red dashed rectangles shown
in Fig. 1(b). Figure 2 shows (top row) λ1 and (bottom row) the
period for the aforementioned regions, and we notice that all of these
bifurcations are period-doubling bifurcations. Each shrimp-shaped
domain consists of a main region followed by an infinite sequence
of period-doubling bifurcations that lead to chaotic dynamics. These
bifurcations follow the rule P0 × 2m, where P0 is the period of the
main region. In the case of the larger periodic domains, P0 = 1,
however, for smaller periodic domains, there are cases where P0 = 2
[Fig. 2(b)] and also P0 = 3 [Figs. 2(c) and 2(d)].

Furthermore, another interesting feature arises in the param-
eter space k × a. In Fig. 1, we notice that the larger shrimp-shaped
domains repeat themselves for a seemingly periodic interval in k (at
least up to k = 30) while their size diminishes. Their position in a
is shifted to smaller values, however. For standard mapping, i.e., for
a = 0 and γ = 0, it is known that as the nonlinearity parameter k
changes, new elliptical fixed points surrounded by stability islands,
which are called “islets” due to their small size, appear in approxi-
mate intervals of 2π .41,67 Recently, Nieto et al.,68 after performing a
systematic search for the islets, have demonstrated that the length,
the area, and the volume of the islets decay following a power law
with exponents −1, −2, and −3, respectively, as a function of k.
Therefore, in Sec. III, we investigate and perform a scaling analysis
on the cascade of shrimp-shaped domains shown in Fig. 1 for larger
values of k.

FIG. 2. (Top row) The largest Lyapunov exponent and (bottom row) the isoperiodic diagram for the regions bounded by the red dashed rectangles labeled from A to D in
Fig. 1, respectively. Note that the color code for the period has slightly changed from the one used in Fig. 1.
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III. SHRIMP-SHAPED DOMAIN SCALING ANALYSIS

In this section, we study the parameter space k × a for larger
values of k considering different values for the dissipation parame-
ter. We calculate λ1 in the parameter space (a, k) ∈ [0, 1] × [0, 200]
for γ = 0.80, 0.85, 0.90, and 0.95 (Fig. 3) following the procedure
discussed in Sec. II. The cascade of shrimp-shaped domains shown
in Fig. 1, indeed, persists for large values of k, and the larger the
value of k, the smaller the periodic domain. The insets in Fig. 3 show
magnifications of some smaller periodic domains. To analyze the
dependence of the size of the periodic domains as k varies, we cannot
simply fix one value of a and vary k as the domains shift to smaller
values of a, and this would lead to a biased measurement of the
length of each domain. Therefore, for each shrimp-shaped domain
in Fig. 3, we define a point (a, k) as its “center” (red dots in Fig. 3).
We perform a 17th-order polynomial fitting with a as a function of k
[a = a(k)] (red curve in Fig. 3) and analyze the length of the periodic
domains along this function with a and k changing simultaneously
according to a = a(k). The values of a and k as well as the obtained
coefficients are available in the supplementary material.

However, let us first analyze the obtained positions (a, k).
Figure 4(a) shows the distance in k between adjacent centers as a
function of k. The larger the dissipation parameter γ , the larger the
interval between two shrimp-shaped domains. In addition, for all

FIG. 3. The largest Lyapunov exponent in parameter space k × a for
(a) γ = 0.80, (b) γ = 0.85, (c) γ = 0.90, and (d) γ = 0.95. The initial condi-
tion is chosen as (x0, p0) = (1.78, 0.0) for all (a, k). The red curve is a 17th-order
polynomial fitting of the red dots at the “center” of each shrimp. The set of values
of a and k for each γ and the corresponding fitting coefficients can be found in the
supplementary material. The insets are magnifications of the regions bounded by
the white dashed rectangles.

values of γ , the distance L is large for small k and saturates to an
approximately constant value as k increases. Additionally, we note
that even though 1k(γ ) has different values for different γ , the
behavior of the curves is the same. Indeed, by employing the trans-
formation 1k → 1k/γ , the curves overlap into a single, and hence,
universal curve [Fig. 4(b)]. This indicates scaling invariance69,70 of
the distance between two shrimp-shaped domains with respect to γ .
When a quantity in a dynamical system exhibits scaling invariance,
its expected behavior remains consistent and robust across different
scales. This means the system can be rescaled such that, after appro-
priate parametrization, the quantity remains scale-independent and
displays universal features.71 We also compute a Feigenbaum-like
constant, defined as

δk = lim
m→∞

km−1 − km−2

km − km−1
(3)

for the values of k corresponding to the centers of the shrimp-
shaped domains [Fig. 4(c)]. This constant is used to describe the
universal route to chaotic motion via period-doubling bifurcations

FIG. 4. (a) The distance between two successive values of k corresponding to
the centers of the shrimp-shaped domains, i.e., 1k = km+1 − km as a func-
tion of k for the values of γ indicated in (b). (b) The overlap of the curves after
the transformation 1k → 1k/γ , indicating that the distance between adjacent
shrimp-shaped domains as a function of k is scale-invariant with respect to γ .
(c) The Feigenbaum-like constant [Eq. (3)] for k.
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in one-dimensional mappings.20,21 In our case, we are not analyz-
ing bifurcations but rather the separation of adjacent shrimp-shaped
domains in k and obtain δk → 1 as m → ∞, which is another indi-
cation that the distance of adjacent shrimp-shaped domains tends to
a constant value as k increases.

In order to determine the size of the shrimp-shaped domains,
we calculate λ1 as a function of k and a simultaneously, where
a = a(k) for the same values of γ used in Figs. 3 and 4 (left column
of Fig. 5). We notice several windows where λ1 < 0. These periodic
windows correspond to the shrimp-shaped domains in the param-
eter space in Fig. 3. For each of these windows, we determine their
length L as a function of k (right column of Fig. 5). The power law
dependence is evident (blue dots), and the exponents, within numer-
ical errors, are the same, which indicates that the rate at which the
periodic domains shrink with k does not depend on γ . Additionally,
the value of λ1 between two adjacent periodic windows scales with
k as ∼C × ln k, with C being approximately the same in all cases
(within numerical errors). Therefore, in the regime of strong dissi-
pation, both the length of the periodic domains and the magnitude

of λ1 within the chaotic regions do not depend on the dissipation
parameter γ but rather exhibit approximately equal scaling relations
for all γ .

Regarding the deviation from the power law decay observed in
Fig. 5(a2) (red dots), it arises due to the presence of several attrac-
tors for specific parameter values. Figures 6(a) and 6(b) display the
basins of attraction in phase space with fixed values of k and a(k).
Most of the phase space corresponds to chaotic dynamics (white
color), with a few periodic regions (black color) coexisting within
the large chaotic region. Note that the initial condition we have been
using, (x0, p0) = (1.78, 0.0), indicated by the green dot, lies in the
chaotic region for these specific parameter values. We fix this initial
condition and vary k in the interval k ∈ [157.5, 160] and then cal-
culate λ1 [green curve in Fig. 6(c)]. We observe a slightly different
behavior by comparing this curve with those in Fig. 5. For instance,
consider the first periodic window in Fig. 5(a1). As k changes, λ1 ini-
tially remains positive but then suddenly drops to λ1 < 0, indicating
the beginning of the periodic domain. The value of λ1 < 0 remains
constant over an interval in k, after which it smoothly rises toward

FIG. 5. (Left column) The largest Lyapunov exponent and (right column) the length of the periodic windows as a function of k for (a) γ = 0.80, (b) γ = 0.85, (c) γ = 0.90,
and (d) γ = 0.95. As k changes, the parameter a also changes according to the function a = a(k) (red curves in Fig. 3).
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FIG. 6. (a) The basins of attraction in the phase space region (x, p) ∈ [0, 2π)

× [0, 200] with k = 158.4 and a ≈ 0.273 72 [calculated according to a = a(k)],
where the black color corresponds to periodic dynamics (λ1 < 0), whereas the
white color corresponds to chaotic dynamics (λ1 > 0). (b) A magnification of the
region indicated by the black dashed box. (c) The largest Lyapunov exponent as
a function of k and a [a = a(k)] for two distinct initial conditions indicated in (a)
by the colored dots. The black vertical dashed line indicates the values of k used
in (a).

zero and then drops back to its previous negative value. With a slight
further change in k, λ1 abruptly increases to a positive value, mark-
ing the end of the periodic domain. In the case of the green curve in
Fig. 6(c), the initial region where λ1 remains negative after the sud-
den transition from positive to negative λ1 seems shorter than other
cases in Fig. 5. Indeed, by choosing an initial condition that belongs
to the periodic region for k = 158.4 [red dot in Fig. 6(a)] and calcu-
lating λ1 for the same interval in k [red curve in Fig. 6(c)], we recover
the observed behavior in Fig. 5. Thus, the values of L corresponding
to the red dots in Fig. 5(a2) are actually the length of “incomplete”
periodic windows, illustrated by the green curve in Fig. 6, when, in
fact, the “true” periodic window is illustrated by the red curve. This
results in an incorrect measurement of the shrimp-shaped domain
length and causes the deviation from the power law decay. Fixing
this measurement is no easy task as the basin of attraction of the
periodic region strongly depends on the parameters k and a.

Therefore, due to the existence of many attractors for specific
parameter values, different initial conditions should yield similar,
but not the same, parameter spaces, and this feature is further
analyzed in Sec. IV.

IV. MULTISTABILITY

In many systems, there is more than only one asymptotic state
or attractor, indicating a multistability scenario where the final state
of a trajectory depends strongly on its initial condition.72 Multista-
bility is characterized by the coexistence of different attractors for a
certain set of parameters, just as shown in Fig. 6(a) where for fixed
values of a and k, we identify a chaotic attractor with a tenuous red
basin and also a periodic attractor, with a blue basin of attraction.

One method to identify the parameters related to multistability
is by the hysteresis of the bifurcation diagrams, i.e., we compute the
diagram for two directions of variation in the parameter. Here, we
choose to compute the diagram in the curve a(k) exhibited as the red
points in Fig. 3, following the attractor. The two chosen directions
are the increase and decrease of k. For each direction, we plot the
diagram with different colors and then superimposed them in order
to identify regions of multistability. The results on the bifurcation
diagrams for γ = 0.8, 0.85, 0.9, and 0.95 are shown in Fig. 7.

In Fig. 7, the black (orange) points indicate the diagram com-
puted for increasing (decreasing) values of k. The diagrams are
superimposed, and for all chaotic regions, we have black and orange
points coexisting. For all panels, we observe a domain where peri-
odic windows separate the chaotic regions. The sequence of periodic
windows is in accordance with Fig. 5. Observing and compar-
ing all the panels, the value of γ does not significantly affect the
bifurcations diagrams since they are visually similar for all the γ

analyzed.
In order to analyze the multistability inside the periodic win-

dows, we highlight the region with the amplification in Fig. 7(a). As
we observe, the multistability scenario is formed by the coexistence

FIG. 7. Existence of hysteresis on the bifurcation diagrams computed on the
curve k[a = a(k)] (red curves in Fig. 3) and the four values of γ : (a) γ = 0.80,
(b) γ = 0.85, (c) γ = 0.90, and (d) γ = 0.95. The black (orange) points indicate
the diagram calculated for increasing (decreasing) values of k. The hysteresis
and, consequently, the multistability are highlighted in the amplification of (a).
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FIG. 8. The ratio of multistable parameters for each periodic window in the bifur-
cation diagram of Figs. 7(a)–7(c). The k-coordinate refers to the value of k of the
center of each shrimp-shaped domain related to the periodic window. We have
not found multistability for γ = 0.95.

of chaotic attractor, represented by the black points in this interval,
with the fixed point in orange. This scenario repeats for all the peri-
odic windows in the diagram, for all studied values of γ . From our
computations of the bifurcation diagrams shown in Fig. 7, there is
a subtle decrease in the size of the black chaotic regions in the mul-
tistable intervals as γ increases. In order to verify this implication,
we compute the ratio R of parameters with multistability in each
periodic window. The result is shown in Fig. 8.

The ratio R presented in Fig. 8 is the ratio between the range
of parameters where there is multistability by the range of the entire
periodic window. The value of k of each point is the value of the cen-
ter of the corresponding shrimp-shaped structure. For γ = 0.8, we
observe that as k increases, the ratio of parameters with multistabil-
ity also increases, up to a scenario where almost 30% of the periodic
window presents multistability. For greater values of γ , γ = 0.85,
and γ = 0.90, the ratio of multistable parameters is smaller than
10% for all periodic windows, and as k increases, the ratio R does
not increase significantly, compared to the increase for γ = 0.8.
Therefore, the increase in the dissipation amplitude decreases the
multistability regions in the bifurcation diagrams. This result is in
accordance with the studies presented in Ref. 73 and 74 where the
presence of small dissipation can lead to an arbitrarily large number
of attractors coexisting in the system.

Another method to describe the coexistence of attractors and,
consequently, the coexistence of different basins of attractors is by
basin stability. The basin stability can be defined as the quantifi-
cation of the volume of the basin.75 According to the authors, the
basin’s volume is related to the probability of returning to its state
after any random perturbation. Thus, the greater the basin, the more
stable it is.

From the diagrams shown in Fig. 7, we observe two possi-
ble attractors: periodic or chaotic. Thus, the basin stability for such
basins will not be null or equal to unity in intervals where the sys-
tem presents multistability. In order to analyze basin stability in
multistability scenarios for the DAKRM, we choose four periodic
windows of Fig. 7(a) and compute the respective fraction of the area
occupied by each basin, i.e., the stability of the basin (Fig. 9).

FIG. 9. Basin stability (BS) as a function of k computed for γ = 0.8 over the red curve of Fig. 3(a) for four intervals with multistability. We present all the intervals in the
same graph by breaking the k-axis. The blue (red) points indicate the value of BS for the periodic (chaotic) basin. In (a), we can observe the transitions from a single chaotic
basin to a periodic basin. In (b), we amplify the graph for small values of BS in order to enhance the increase in the BS of the periodic basin.
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The basin stability for each basin is computed by the anal-
ysis of 106 points uniformly distributed in the phase space
(x, p) ∈ [0, 2π] × [0, 200]. We iterate each point for 103 iterations
and compute the fixed points (if they exist) to each parameter in the
intervals. If the solution converges to a periodic attractor, the point
belongs to the periodic basin; otherwise, the point belongs to the
chaotic basin.

We compute the basin stability for four different intervals
of multistability: (1) k ∈ [21.3, 21.5], (2) k ∈ [56.06, 56.26], (3)
k ∈ [117.52, 117.72], and (4) k ∈ [185.36, 186.66]. In order to
present all intervals in the same graph, we break the k-axis into dif-
ferent intervals, and the breaks are indicated by // symbols. From
the basin stability behavior shown in Fig. 9(a), we observe that
multistable cases (where BS 6= 0 and BS 6= 1) are transitions from
a scenario with just chaotic attractor (red points in BS = 1) to a
scenario with just a periodic basin (blue points in BS = 1). For all
intervals, we observe a smooth and subtle decrease in the BS of
the chaotic basin followed by an abrupt decrease to BS = 0. Since
we only have two possible basins, BSchaotic + BSperiodic = 1. Thus, the
basin stability for the periodic basin increases abruptly or smoothly
as the chaotic basin changes.

Observing the magnification in Fig. 9(b), as the value of k
increases, the basin stability for the periodic basin increases up to
lower values until it becomes the only basin in the system. Thus, the
area of the periodic basin in a multistable scenario decreases as k
increases. In order to illustrate this result, we choose, for all intervals

FIG. 10. Attraction basin for multistability cases. For all studied cases, we have
the coexistence of a chaotic attractor (not shown in the figure) and two fixed point
attractors, represented by the square and triangle shaped dots. The chaotic basin
is shown in white, while the basin related to the periodic attractor is shown in red
and blue. The values of k are (a) k = 21.46, (b) k = 56.20, (c) k = 117.66, and
(d) k = 185.60, and for all panels, γ = 0.8.

in Fig. 9, the last parameter k with multistability and compute the
respective basins of attraction (Fig. 10).

From the basin of attractions shown in Fig. 10, we observe that
as k increases, the area of the periodic basin decreases, for the chosen
parameters. In addition, the p value of the attractors increases as k
assumes greater values. These two consequences affect the compu-
tation of the Lyapunov exponent. Since the periodic basin shrinks
as k increases and the value of p changes for every periodic window,
it is less likely to choose one periodic initial condition to compute
λ. With this, we, indeed, verify that the deviation represented by
the red points in Fig. 5(a2) is a consequence of multistability. This
deviation is not seen for greater values of γ because as γ increases,
there are fewer multistable regions and they are smaller, implying
less influence in the Lyapunov exponent computation.

V. CONCLUSIONS

We have performed a scaling analysis in the parameter space
of the dissipative asymmetric kicked rotor map and explored mul-
tistable scenarios for different parameter values. Our initial analysis
focused on the parameter space k × a in the regime of strong dis-
sipation. We have found a cascade of shrimp-shaped domains in
which these periodic structures repeat themselves for increasing val-
ues of k and the larger the values of k, the smaller the periodic
domain. We have demonstrated that the length of the shrimp-
shaped domains scales with k as a power law and the decay exponent
does not depend on the dissipation parameter γ . Additionally, we
have found that as the dissipation becomes weaker and the non-
linearity parameter grows larger, the existence of several attractors
becomes relevant. This results in an incorrect measurement of the
length of the shrimp-shaped domains due to the reduction in the
size of the periodic basin, leading to a deviation in the scaling of the
lengths of these domains.

When analyzing the multistability scenarios, we have observed
that inside the periodic windows in the bifurcation diagram, there is
a narrow region with the coexistence of chaotic and periodic attrac-
tors. This region decreases and eventually disappears for greater
dissipation parameters γ . By computing the ratio of the multistable
region for each periodic window, we have identified an increase
in the ratio as k increases when considering weaker dissipation,
whereas, for greater dissipation, the ratio is almost constant. We
have also calculated the basin stability and the basins of attraction.
We have demonstrated that as k increases, the area occupied by
the periodic basin decreases and is restricted to larger values of the
coordinate p around the fixed points. These two results explain the
incorrect measurement of shrimp-shaped properties since the peri-
odic behavior becomes more rare and more restricted to some initial
conditions in the system.

SUPPLEMENTARY MATERIAL

See the supplementary material for the data concerning the
centers of the shrimp-shaped domains shown as red dots in Fig. 3
and the coefficients of the polynomial fitting.
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