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ABSTRACT

We investigate some statistical properties of escaping particles in a billiard system whose boundary is described by two control parameters
with a hole on its boundary. Initially, we analyze the survival probability for different hole positions and sizes. We notice that the survival
probability follows an exponential decay with a characteristic power-law tail when the hole is positioned partially or entirely over large stability
islands in phase space. We find that the survival probability exhibits scaling invariance with respect to the hole size. In contrast, the survival
probability for holes placed in predominantly chaotic regions deviates from the exponential decay. We introduce two holes simultaneously
and investigate the complexity of the escape basins for different hole sizes and control parameters by means of the basin entropy and the
basin boundary entropy. We find a non-trivial relation between these entropies and the system’s parameters and show that the basin entropy
exhibits scaling invariance for a specific control parameter interval.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0222215

The phase space of a typical two-dimensional Hamiltonian sys-
tem is not completely ergodic. There is a coexistence of chaotic
and regular regions that gives rise to the well-known phenomenon
of stickiness. Chaotic orbits become trapped near stability islands
for long, but finite, times, and this intermittence in the chaotic
motion shapes the transport and statistical properties across
phase space. In this paper, we analyze the escape dynamics of a
billiard system whose boundary is defined by two control parame-
ters with an exit hole along its boundary. We find that the survival
probability either follows an exponential or a stretched exponen-
tial decay depending on the position of the hole. By introducing
two holes simultaneously, we construct the escape basins for dif-
ferent hole’s sizes and quantify the basins complexity using the
basin entropy and the basin boundary entropy. The complexity
of the basins depends nontrivially on the control parameters, and
we find that the basin entropy exhibits scaling invariance for a
specific control parameter interval.

I. INTRODUCTION

In general, the phase space of a typical quasi-integrable Hamil-
tonian system is mixed, where regular and chaotic domains coexist.1

The regular regions consist of periodic and quasiperiodic orbits
that lie on invariant tori, while the chaotic orbits fill densely the
whole available region in phase space. For two-dimensional area-
preserving maps, the invariant tori divides the phase space into
distinct and unconnected domains; i.e., an orbit initially inside
an island will never reach the chaotic sea and vice versa.1,2 The
stability islands and chaotic regions organize themselves in phase
space in an infinite hierarchical islands-around-islands structure,
where the larger islands are surrounded by smaller islands, which
are in turn surrounded by even smaller islands and so on for
increasingly smaller scales.3,4 This complex interplay between sta-
bility islands and chaotic regions gives rise to the phenomenon of
stickiness.5–12 The stickiness of chaotic orbits occurs near stability

Chaos 34, 113122 (2024); doi: 10.1063/5.0222215 34, 113122-1

Published under an exclusive license by AIP Publishing

 08 N
ovem

ber 2024 16:31:27

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0222215
https://doi.org/10.1063/5.0222215
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0222215
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0222215&domain=pdf&date_stamp=2024-11-08
https://orcid.org/0000-0002-1121-6371
https://orcid.org/0000-0002-4098-7730
https://orcid.org/0000-0003-1891-6415
https://orcid.org/0000-0001-8306-8315
https://orcid.org/0000-0001-8224-3329
mailto:matheusrolim95@gmail.com
https://doi.org/10.1063/5.0222215


Chaos ARTICLE pubs.aip.org/aip/cha

islands, and these orbits experience long, but finite, periods of nearly
quasiperiodic motion. Before escaping to the chaotic sea, these orbits
are trapped within regions bounded by cantori.2,4,9,13 The cantori,
which are a Cantor set, formed by the remnants of the destroyed
Kolmogorov–Arnold–Moser (KAM) tori, as predicted by the KAM
theorem,1 have a different function in the transport of particles in
phase space than the KAM tori. While the KAM tori divide the phase
space into distinct regions, the cantori act as partial barriers to the
transport in phase space. The orbits may be trapped in a region
bounded by the cantori, and once inside a cantorus, the chaotic
orbits may transition to an inner cantorus, and so on, to arbitrarily
small levels in the hierarchical structure of islands-around-islands.

The stickiness affects the statistical properties of the system,
such as the decay of correlations6–8,14,15 and transport.16–19 For closed
systems, the transport properties may be studied considering the
recurrence-time statistics (RTS),20–26 while for open systems, it is
customary to analyze the survival probability.11,27–37 For both cases,
strongly chaotic dynamics leads to an asymptotic exponential decay,
while in systems that exhibit stickiness, a power-law tail emerges.
Whether the decay follows an exponential or power law corresponds
to normal or anomalous transport,16–19 respectively.

In this paper, we study the escaping properties of a billiard
system with a static boundary and the scaling invariance38 of some
observables. Essentially, when a system exhibits scaling invariance,
its expected behavior remains consistent and robust regardless of
scale. It is explored in various systems ranging from area-preserving
maps, dissipative maps, and billiards as well,39–47 and more recently,
it has been explored for fractional maps.48,49 The billiard system
with a static boundary is a Hamiltonian system, and it is one of the
simplest dynamical systems to exhibit chaotic motion. In its two-
dimensional formulation, a point-like particle is confined to a planar
region � delimited by hard walls ∂�. The particle undergoes elastic
collisions with the boundary ∂� such that the angle of incidence
equals the angle of reflection.50 Because billiards have a relatively
simple structure, whether chaotic behavior emerges is entirely deter-
mined by the geometric characteristics of ∂�, i.e., the presence
of dispersing or defocusing components in the boundary ∂�.51

Therefore, different billiard geometries yield different dynamical
behavior, namely, fully regular,50 in which all orbits lie on periodic
or quasiperiodic tori, fully chaotic,52–54 in which almost every orbit
fills densely the entire phase space, and, mixed dynamics,21,23,55,56

where the phase space is composed of both regular and chaotic
domains, typical of quasi-integrable Hamiltonian systems. Billiard
systems have also been studied in the context of quantum57–61 and
relativistic62–64 mechanics.

We consider in this paper a billiard system whose boundary
depends on two control parameters. This system has been intro-
duced in the context of quantum mechanics,65 and recently, some
of its classical dynamical properties have been studied.66 Our focus
lies in examining the escaping properties of an ensemble of parti-
cles through a hole placed on the billiard boundary. We analyze
the survival probability for different hole positions and hole sizes
as well. We find that when the hole overlaps, either partially or
entirely, with larger stability islands, the survival probability follows
an exponential decay with a characteristic power-law tail. Also, in
these cases, the survival probability exhibits scaling invariance with
respect to the hole size. On the other hand, when the hole is placed

within a predominantly chaotic region of phase space, the survival
probability deviates from this exponential decay. We extend our
analysis by introducing two holes simultaneously, and we construct
the escape basins for different hole sizes. We find the escape basins to
be more complex, in the sense of having fewer definite structures, for
smaller hole sizes. We quantify this complexity by means of the basin
entropy, Sb, and the basin boundary entropy, Sbb.67,68 We find that
the larger the hole size, the smaller both entropies become, doing so
in a non-trivial and intricate manner. Nonetheless, we find that for
a specific parameter interval, Sb has an exponential dependence on
the control parameter. Additionally, we show that Sb also exhibits
scaling invariance relative to this control parameter.

This paper is organized as follows. In Sec. II, we formally intro-
duce billiard systems and the system under study in this paper. We
also demonstrate the algorithm used to calculate the successive col-
lisions of the particle with the billiard boundary. In Sec. III, we
introduce one hole on the billiard boundary from where the parti-
cles can escape. We calculate the survival probability for several hole
sizes and positions and show that the survival probability exhibits
scaling invariance when the hole is placed partially or entirely over
the large stability islands. In Sec. IV, we consider two holes open
simultaneously and construct escape basins for different hole sizes.
We characterize the basins by means of the basin entropy and show
that the basin entropy depends non-trivially on the hole sizes and
the billiard parameters. We also show that the basin entropy exhibits
scaling invariance. Section V contains our final remarks.

II. MODEL AND MAPPING

In the two-dimensional formulation of billiards, one considers
a point-like particle of mass µ, or an ensemble of particles, confined
in a simply connected planar region � delimited by hard walls ∂�.
A billiard system with a static boundary is a Hamiltonian system
with potential V(q) ≡ 0 within the boundary and infinity on the
boundary ∂�; i.e., its Hamiltonian function is given by

H(p, q) =
p2

2µ
+ V(q), (1)

with

V(q) =
{

0 for q ∈ �,
∞ otherwise,

(2)

where p and q are the generalized momentum and position, respec-
tively. The particles undergo elastic collisions with the boundary
such that only the momentum’s direction is changed, and the total
mechanical energy of the system, H(p, q) ≡ E = p2/2µ + V(q), is a
constant of motion. Also, the angle of incidence equals the angle of
reflection.50

In this paper, we study a family of billiards with the boundary
radius, R(θ), implicitly parameterized by65,66

R2 +
2
√

3ξ

9
R3 cos(γ θ) = 1, (3)

where θ ∈ [0, 2π) is the polar angle measured counterclockwise
from the horizontal axis, γ is an integer number, and ξ ∈ [0, 1) con-
trols the shape of the boundary. Figure 1 displays different boundary
shapes for different parameter values. ξ = 0 yields a circular shape
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FIG. 1. The billiard boundary for (a) γ = 1, (b) γ = 2, (c) γ = 3, (d) γ = 4, (e)
γ = 5, and (f) γ = 6 with different values of ξ , namely, (black) ξ = 0.0, (red)
ξ = 0.15, (blue) ξ = 0.30, (green) ξ = 0.75, (cyan) ξ = 0.90, and (purple) ξ =
0.999 99.

for all γ , and γ = 3 and γ = 4 yield an equilateral triangle and a
square-like shape, respectively, for ξ → 1. The case γ = 3 is particu-
larly interesting because both ξ = 0 and ξ → 1 yield fully integrable
billiard shapes.

The billiard map is a two-dimensional nonlinear mapping
M : R

2 → R
2. We characterize the particle’s collisions with the

boundary by two angles: θ and α. The mapping relates these vari-
ables before and after the nth collision,

(θn+1, αn+1) = M(θn, αn) = M
n(θ0, α0), (4)

where θ is the polar angle and α ∈ [0, π] is measured counter-
clockwise from the tangent line at the collision point, and it is
a complementary angle that measures the particle’s direction of
motion from the tangent line. Considering a particle initially at θn

with initial angle αn, the particle starts its motion from the initial
point (xn, yn) given by, in Cartesian coordinates,

x(θn) ≡ xn = R(θn) cos θn,

y(θn) ≡ yn = R(θn) sin θn.
(5)

It is convenient to define the slope φ of the tangent line measured
counterclockwise from the horizontal axis as well. It is given by

φn = arctan[
y′(θn)

x′(θn)
] mod 2π , (6)

where the prime indicates the derivative with respect to θ . Therefore,
the direction of the particle’s momentum, measured counterclock-
wise from the horizontal axis, is

µn = αn + φn mod 2π . (7)

Since no forces are acting on the particle between two subse-
quent collisions, the particle follows a straight line described by the

following equations:

xn+1 = xn + vn cos(µn)1t,

yn+1 = yn + vn sin(µn)1t,
(8)

where 1t is the time interval between two collisions. We consider
vn = 1 without loss of generality, and the particle’s trajectory is given
by

y(θn+1) − y(θn) = tan(µn)[x(θn+1) − x(θn)], (9)

where θn+1 is the new angular position of the particle where it hits the
boundary. The direction of the particle’s trajectory after the collision
is given by

αn+1 = φn+1 − µn mod π . (10)

Therefore, the final form of the mapping M is

M :











F(θn+1) = y(θn+1) − y(θn)−
− tan(µn)[x(θn+1) − x(θn)] = 0,

αn+1 = φn+1 − µn mod 2π .

(11)

Figure 2(a) shows the angles mentioned above for two sub-
sequent collisions. Usually, the angle θn+1 is obtained numerically
from F(θn+1) = 0 using a bisection method,31 for example. How-
ever, in our case, we consider a more efficient algorithm to calculate
θn+1,66,69 which we outline shortly. This algorithm can be 25 times
faster in some situations than the traditional algorithm for studying
billiards,69 and it is illustrated in Figs. 2(b) and 2(c). It is important
to note that even though this is an efficient algorithm, it is not appli-
cable when the boundary has convex components. In our model, the
billiard shapes have no convex components for γ ≤ 3 (see Fig. 1),
and we limit our analysis to γ = 3. For an extended and more gen-
eral version of this algorithm, we refer the reader to Ref. 69. First,
we consider an external circle to the billiard boundary with radius
Rmax = R(π/γ ) [dotted black line in Figs. 2(b) and 2(c)]. The time
it takes for the particle, initially at (x0, y0) [black dot in Fig. 2(b)], to
reach the outer circle is obtained from x2

p + y2
p = R2

max [cyan dot in

Figs. 2(b) and 2(c)], where xp and yp are given by Eq. (8). Thus, we
obtain a quadratic equation for 1t,

(1t)2 + 2[x0 cos µ0 + y0 sin µ0]1t

+ x2
0 + y2

0 − R2
max = 0, (12)

with the solution

1te =
−b +

√
b2 − 4c

2
, (13)

where

b = 2[x0 cos µ0 + y0 sin µ0],

c = x2
0 + y2

0 − R2
max.

(14)

Hence, the Cartesian coordinates (xe, ye) of the particle’s collision
point with the outer circle [cyan dot in Figs. 2(b) and 2(c)] and its
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FIG. 2. (a) Illustration of the billiard boundary and the angles considered in the billiard map for γ = 3 and ξ = 0.6 and initial condition (θ0,α0) = (π/4, 2π/5). Panels (b)
and (c) illustrate the algorithm for finding the next collision point, as discussed in the main text.

angular position are, respectively,

xe = x0 + cos(µ0)1te,

ye = y0 + sin(µ0)1te,

θe = arctan

(

ye

xe

)

mod 2π .

(15)

We proceed to find the position on the billiard boundary for the
angle θe [orange dot in Figs. 2(b) and 2(c)],

xa = R(θe) cos θe,

ya = R(θe) sin θe,
(16)

and the tangent line that passes through this point (xa, ya) [orange
line in Fig. 2(c)],

yt(x) = ya +
y′(θe)

x′(θe)
(x − xa). (17)

Next, we calculate the interception of this tangent line with the
particle’s trajectory [lime green dot in Fig. 2(c)] as yp = yt(xp),

y0 + sin(µ0)1tnew
e

= ya +
y′(θe)

x′(θe)
[x0 + cos(µ0)1tnew

e − xa]. (18)

Isolating 1tnew
e , we obtain

1tnew
e =

ya − y0 + y′(θe)

x′(θe)
(x0 − xa)

sin(µ0) − y′(θe)

x′(θe)
cos(µ0)

. (19)

Therefore, the new interception point (xnew
e , ynew

e ) [lime green dot in
Fig. 2(c)] and its angular position are given by, respectively,

xnew
e = x0 + cos(µ0)1tnew

e ,

ynew
e = y0 + sin(µ0)1tnew

e , (20)

θnew
e = arctan(

ynew
e

xnew
e

).

If |θnew
e − θe| < TOL, |xnew

e − xa| < TOL, and |ynew
e − ya| <

TOL, with TOL = 10−11, we consider θnew
e as the angular position of

the particle’s collision with the billiard boundary, θ1 = θnew
e . If these

conditions are not met, we repeat this procedure until the desired
tolerance is achieved.

We investigate the mapping (11) along with the previously
described algorithm to identify successive collisions with the bound-
ary for γ = 3, varying the values of ξ . We examine 150 randomly
selected initial conditions, iterating each one for N = 104 times
(Fig. 3). The system exhibits a complex coexistence of regular and
chaotic domains across all considered values of ξ , characteristic of
quasi-integrable Hamiltonian systems. As ξ increases, the chaotic
domain expands, leading to the destruction of stability islands.
The period-3 islands undergo multiple bifurcations and mutations.
However, as ξ approaches 0.85 [Fig. 3(h)], several smaller islands
emerge. Beyond this threshold, the system becomes “less” chaotic;
i.e., the chaotic domain diminishes as ξ → 1.66

III. SURVIVAL PROBABILITY

In this section, we explore the properties for the escape of
particles through a hole of size h, measured in the polar angle
units, positioned on the billiard boundary. We consider γ = 3 and
ξ = 0.45. Initially, we choose two distinct hole locations (Fig. 4) cen-

tered at θ
(1)
exit = 2π/3 and θ

(2)
exit = 5π/6. We initialize an ensemble of

M = 106 randomly chosen particles within the phase space region
defined by (θ , α) ∈ [0, π/3] × [π/2 − 0.25, π/2 + 0.25] and iterate
each particle up to N = 106 collisions.70 We keep only one hole open
at a time, and every time a particle collides with the exit, it escapes
and we interrupt the simulation and initialize another particle. We
repeat this procedure until the whole ensemble is exhausted. We
compute the survival probability, P(n), that corresponds to the frac-
tion of particles that have not yet escaped through the hole until the
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FIG. 3. The phase space for γ = 3 and (a) ξ = 0.20, (b) ξ = 0.30, (c) ξ = 0.40, (d) ξ = 0.45, (e) ξ = 0.55, (f) ξ = 0.70, (g) ξ = 0.80, and (h) ξ = 0.85.

nth collision. Mathematically, it is defined as

P(n) =
1

M
Nsurv(n), (21)

where M is the total number of particles and Nsurv(n) is the num-
ber of particles that have survived until the nth collision. It is widely
known that for strongly chaotic systems, the survival probability
decays exponentially31,33,34,36 as

P(n) ∼ exp(−κn), (22)

where κ > 0 is the escape rate. However, the stickiness effect affects
the statistical properties of the escape of particles. For systems
with mixed phase space, the decay is slower. It has been shown
that for such systems, the decay is either a power law28,32,37 or a
stretched exponential.30,35,36 Due to the stickiness effect, particles

FIG. 4. (a) The billiard boundary and (b) the phase space for γ = 3 and

ξ = 0.45. The red (θ
(1)
exit = 2π/3) and blue (θ

(2)
exit = 5π/6) lines in (a) on the

boundary represent the holes with size h = 0.20. The dashed lines in (b)
correspond to the positions in phase space where the holes are centered.

might be trapped near stability islands and resonance zones for a
long, but finite, time leading to long escape times and causing the
aforementioned deviations from the exponential decay.

In Fig. 5, we present the survival probability for six different
hole sizes, h, calculated considering the two hole positions shown
in Fig. 4. Both holes exhibit qualitatively similar behavior. For short
times, the decay is exponential, while for longer times, a power-law
tail emerges, which is a characteristic feature of the stickiness effect.
Furthermore, κ depends on h as a power law, κ(h) ∼ hz (Fig. 6), with

FIG. 5. The survival probability through holes (a) #1 (θ
(1)
exit = 2π/3) and (b) #2

(θ
(2)
exit = 5π/6) individually for γ = 3, ξ = 0.45 and different values of h. We

considered an ensemble of M = 106 initial conditions randomly distributed in
(θ ,α) ∈ [0,π/3] × [π/2 − 0.25,π/2 + 0.25].
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FIG. 6. The escape rate for holes (red dots) #1 and (blue dots) #2 as a function
of the hole size h. The dashed lines correspond to the optimal fit based on the
function f(h) ∼ hz.

exponents z1 = 0.988 ± 0.001 and z2 = 1.061 ± 0.006 for holes #1
and #2, respectively. The knowledge of these exponents allows us to
rescale the horizontal axis by the transformation n → nhzi making
the survival probabilities of the corresponding holes overlap onto a
single and, hence, universal plot (Fig. 7). Hansen et al.71 obtained
similar results for a different billiard system. They reported a linear
relationship between κ and h (κ ∼ h/2π), finding a good agreement
with their data. However, a more general and accurate description
of the behavior of κ(h) can be achieved by assuming a power-law
relation. Indeed, even though the exponents zi we have obtained are
close to 1, the transformation n → nhz with z = 1 does not overlap
the survival probability curves (not shown) as effectively as when
considering z = zi as done in this paper.

The escape rate is larger for larger h, as expected. This leads
to the following question: Is there a preferential location to place
the hole to enhance the escape of particles72? Insights have already

FIG. 7. The survival probability through holes (a) #1 and (b) #2 individually for
γ = 3, ξ = 0.45 and different values of h after the transformation n → nhzi .
Each zi corresponds to the value shown in Fig. 6. The curves overlap onto a
single and universal plot.

been provided in Refs. 71 and 73 for a different billiard system, indi-
cating that the escape is faster when the hole is placed in regions
without stability islands. Here, we observe different behaviors in the
survival probability decay depending on whether the hole overlaps
with one of the larger stability islands. We consider γ = 3, ξ = 0.45,
and h = 0.20 and change the hole position in the interval θexit ∈
[π/3, π]. Some holes are placed over regions with stability islands,
while others are placed over regions dominated by the chaotic sea.
We calculate the survival probability [Fig. 8(a)] for each one of these
hole positions [Fig. 8(b)].

When the hole is over regions with islands, we observe what we
have previously reported: the decay is exponential for small times,
whereas for larger times, the power law emerges. On the other hand,
when the hole is in the chaotic sea, i.e., away from the main islands,
the decay is slowed down, and we observe stretched exponentials.
The difference is mainly because when the hole is placed partially

FIG. 8. (a) The survival probability for γ = 3, ξ = 0.45, and h = 0.20 for dif-
ferent hole positions marked by colored dashed lines in (b). We considered
an ensemble of M = 106 initial conditions randomly distributed in (θ ,α) ∈
[0,π/3] × [π/2 − 0.25,π/2 + 0.25].

Chaos 34, 113122 (2024); doi: 10.1063/5.0222215 34, 113122-6

Published under an exclusive license by AIP Publishing

 08 N
ovem

ber 2024 16:31:27

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 9. The escape basin for the particles that escape through holes (black) #1 and (red) #2 for γ = 3, ξ = 0.45 and (a) h = 0.01, (b) h = 0.05, (c) h = 0.08, (d) h = 0.12,
(e) h = 0.15, and (f) h = 0.2.

or entirely over an island, it might destroy all orbits in the vicinity
of this island. In other words, it might destroy sticky regions and
resonance zones that are responsible for slowing down the decay.

IV. ESCAPE BASINS

We have previously studied the escape of particles when one
hole was open at a time. Next, we turn our attention to the escape
dynamics when two holes are open simultaneously and determine
the escape basins for various hole sizes. We initialize an ensemble of
M = 106 particles uniformly distributed in the phase space region
delimited by (θ , α) ∈ [0, π/3] × [π/2 − 0.25, π + 0.25] for γ = 3
and ξ = 0.45. Each particle undergoes up to N = 106 collisions. We
consider the same hole positions as in Sec. III (Fig. 4). To construct
the escape basin, we iterate each particle until it escapes from one of
the two exits. If a particle escapes from hole #1 (#2), we color the cor-
responding point black (red). If a particle does not escape within the
maximum number of iterations, we color the point white. Figure 9
shows the escape basins for six different hole size values h when two
holes are open.

For small hole sizes [Fig. 9(a)], the black and red points are dis-
tributed almost at random, with nearly no discernible structure in
the basin. As the hole sizes increase [Figs. 9(b)–9(f)], the basins begin
to exhibit a highly complex structure, characteristic of fractal basins.
In order to quantify this complex structure, we apply the concept of
basin entropy introduced by Daza and co-workers.67,68 This method

has been successfully applied to a variety of problems in nonlin-
ear dynamics, such as dissipative74 and area-preserving75–77 nontwist
systems, drift motion of charged plasma particles,78,79 chaotic scat-
tering in Hamiltonian sytems80,81 as well as relativistic scattering.82

The basin entropy has been used to determine the fractal dimension
of boundaries as well.83–85

The basin entropy quantifies the degree of uncertainty of a
basin due to the fractality of the basin boundary. In order to calculate
it, let us consider a bounded phase space region R, which contains
NA distinguishable asymptotic states. We discretizeR into a mesh of
NT × NT boxes of linear size δ and define an application C : R → N

relating each initial condition to its asymptotic state. Daza et al.67

called this application a color. Each box contains a large number
Np of initial conditions, each one leading to one of the NA colors
(asymptotic states). For each box i, we associate a probability pij of a
color j to exist in this box and define the Shannon entropy of the ith
box as

Si = −
ni

∑

j=1

pij log2 pij, (23)

where ni ∈ [1, NA] is the number of different colors inside the ith
box. The probability pij is simply the ratio between the number of
points with color j and the total number of colors (initial conditions)
in the box. In this paper, we consider a box with 25 initial conditions
and cover the phase space region with 216 × 216 boxes, totalizing
10802 = 1 166 400 initial conditions.
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If the boxes covering R are nonoverlapping, the basin entropy
Sb and the basin boundary entropy Sbb of the phase space region are
simply

Sb =
1

N2
T

N2
T

∑

i=1

Si,

Sbb =
1

Nb

N2
T

∑

i=1

Si,

(24)

where Nb is the number of boxes that contain more than one color.
The basin entropy, Sb, measures the basin degree of uncertainty,
i.e., for a single asymptotic state Sb = 0, whereas for NA equiprob-
able asymptotic states, Sb has its maximum value of Sb = log2 NA.
On the other hand, the basin boundary entropy, Sbb, measures the
uncertainty related only to the basin boundary. A fractality crite-
rion has been provided by Daza et al.:67 if Sbb > log2 2 = 1, then
the boundary is fractal. However, this is a sufficient but not nec-
essary condition. In other words, if Sbb > 1, the boundary is frac-
tal; however, if the boundary is fractal, Sbb might not satisfy this
condition.

In our case, there are only three possible asymptotic states:
the particle escapes from either hole #1 or hole #2 or it does
not escape at all (up to 106 collisions); hence, NA = 3. To calcu-
late the entropies, we determine the escape basins for γ = 3 and
ξ ∈ [0.2, 0.9] for different hole sizes in the interval h ∈ [0.01, 0.20]
(Fig. 10 and Video 1 from the supplementary material). The basin
entropy is large for small values of h, as expected, since the basins
exhibit little to no ordered structure, as shown in Fig. 9(a). In fact,
as h approaches zero, the unpredictability of the particle’s final
state increases indefinitely.86 This behavior resembles that of riddled
basins observed in dissipative systems. Daza et al.87 demonstrated
that a riddled basin is characterized by the condition Sb = Sbb.
Figure 10(c) shows the ratio Sb/Sbb as a function of both ξ and h.
For small h, several values of ξ satisfy the criterion Sb = Sbb (indi-
cated by the gray color), suggesting the presence of a riddled basin
in these cases. As h increases, structures start to appear, and Sb and
Sbb decrease, in general, but in a non-trivial fashion. This leads to
an important question about such a measure: Does the behavior of
the basin entropy Sb remain invariant under variations in ξ and
h? To address our inquiry, we first plot the basin entropy Sb as a
function of the hole size h for different ξ values [Fig. 11(a)]. We
notice that Sb is described by an exponential function of the form
Sb(h; ξ) = Be−Ah. The analysis of the coefficients A and B as a func-
tion of ξ [Figs. 11(b) and 11(c)] reveals power-law scaling for both
of them, i.e., A(ξ) ∼ ξ ζ1 and B(ξ) ∼ ξ ζ2 , with ζ1 = −0.9 ± 0.1 and
ζ2 = 0.17 ± 0.02. Armed with these exponents, we rescale the hor-
izontal and vertical axis by the transformations h → h/ξ−ζ1 and
Sb → Sb/ξ

ζ2 , respectively. These transformations align the curves
in Fig. 11(a) onto a single and, hence, a universal plot [Fig. 11(d)],
indicating that Sb maintains its behavior regardless of ξ within the
chosen interval.

The scaling invariance of Sb within this specific interval of ξ

arises because there are no substantial changes in the chaotic sea,
nor are there significant creations or destructions of stability islands.
The modifications to the basin structure are minor for this particular

FIG. 10. (a) The basin entropy, Sb; (b) the basin boundary entropy, Sbb; and (c)
the ratio Sb/Sbb for the escape basin considering two holes (Fig. 9) as a function
of ξ and the hole sizes h with γ = 3.

interval, and Sb can potentially show scaling invariance in a different
interval of ξ , where the escape basins exhibit similar behavior.

V. FINAL REMARKS

We have examined the statistical properties of the escape of
particles from a billiard system by introducing a hole on the bil-
liard boundary. First, our analysis focused on the behavior of the
survival probability, which gives us information regarding the frac-
tion of particles that have not yet escaped from the billiard up to a
certain number of collisions. We have demonstrated that when the
hole overlaps with the larger stability islands, the survival probabil-
ity obeys an exponential decay, whereas when the hole is placed in a
region dominated by the chaotic sea, the decay follows a stretched
exponential. Furthermore, in the cases where the hole is placed
partially or entirely over a stability island, the survival probability
exhibits scaling invariance with respect to the size of the exit; i.e., the
survival probability preserves its behavior regardless of the hole size.

Second, we have constructed escape basins for several values of
the control parameter ξ and the hole sizes h by introducing two holes
simultaneously. We have demonstrated that for h � 1, the basins
exhibit an almost random pattern, with very few definite structures.
As h increases, the basins become increasingly complex with the
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FIG. 11. (a) The basin entropy, Sb, as a function of the hole size, h, for different values of ξ (colored dots). The dashed lines correspond to the optimal fit based on the
function Sb(h; ξ) = Be−Ah. (b) and (c) The coefficients A and B obtained from the fitting in (a) as a function of ξ . Both coefficients scale with ξ as a power law, and the
dashed lines correspond to the optimal fit based on the function f(ξ) ∼ ξ ζ . (d) The overlap of Sb onto a single and universal plot after the transformations h → h/ξ−ζ1 and
Sb → Sb/ξ

ζ2 .

emergence of multiple structures. In order to measure the complex-
ity of these structures, we have applied the concept of basin entropy.
We have found that both the basin entropy, Sb, and the basin bound-
ary entropy, Sbb, are larger for small values of h. In fact, there are
several values of ξ in which the criterion Sb = Sbb is satisfied, indi-
cating the presence of a riddled basin in these cases. Moreover, both
entropies decrease as h increases.

The relation between the entropies Sb and Sbb and the parame-
ters ξ and h is highly irregular and non-trivial. However, we have
found that the basin entropy does maintain its behavior under
parameter variations for a specific parameter interval. For ξ ∈
[0.31, 0.38], the basin boundary exhibits an exponential decay with
h, Sb(h; ξ) = Be−Ah, and the coefficients A and B scale with ξ as a
power law, with exponents ζ1 = −0.9 ± 0.1 and ζ2 = 0.17 ± 0.02.
Upon rescaling the horizontal and vertical axis by h → h/ξ−ζ1 and
Sb → Sb/ξ

ζ2 , respectively, we have demonstrated that the basin
entropy curves align into a single, and universal, curve. This indi-
cates that Sb is robust under variations of ξ . We would like to
emphasize that while our basin entropy analysis mainly focused on
boxes with 25 initial conditions, we also conducted simulations with
9, 16, 36, and 64 initial conditions. These simulations produced sim-
ilar results, showing only minor variations in the exponents ζ1 and
ζ2. Due to this, we have chosen not to display them on this paper.

As a perspective of future works, we intend to study this billiard
system with time-dependent holes as well as with a time-dependent
boundary.

SUPPLEMENTARY MATERIAL

See the supplementary material for the video of the escape
basins as a function of ξ for different values of h.
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15Č. Lozej and M. Robnik, “Structure, size, and statistical properties of chaotic
components in a mixed-type Hamiltonian system,” Phys. Rev. E 98, 022220
(2018).
16G. M. Zaslavski and B. V. Chirikov, “Stochastic instability of non-linear oscilla-
tions,” Sov. Phys. Usp. 14, 549 (1972).
17G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity, renormaliza-
tion, and phase space nonuniformity of Hamiltonian chaotic dynamics,” Chaos 7,
159–181 (1997).
18G. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,” Phys. Rep.
371, 461–580 (2002).
19G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford Univer-
sity Press, New York, 2005).
20V. Afraimovich and G. M. Zaslavsky, “Fractal and multifractal properties of exit
times and Poincaré recurrences,” Phys. Rev. E 55, 5418–5426 (1997).
21E. G. Altmann, A. E. Motter, and H. Kantz, “Stickiness in mushroom billiards,”
Chaos 15, 033105 (2005).
22H. Tanaka and A. Shudo, “Recurrence time distribution in mushroom billiards
with parabolic hat,” Phys. Rev. E 74, 036211 (2006).
23E. G. Altmann, A. E. Motter, and H. Kantz, “Stickiness in Hamiltonian systems:
From sharply divided to hierarchical phase space,” Phys. Rev. E 73, 026207 (2006).
24R. Venegeroles, “Universality of algebraic laws in Hamiltonian systems,” Phys.
Rev. Lett. 102, 064101 (2009).
25C. V. Abud and R. E. de Carvalho, “Multifractality, stickiness, and recurrence-
time statistics,” Phys. Rev. E 88, 042922 (2013).
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