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ABSTRACT

Adaptive dynamical networks are network systems in which the structure co-evolves and interacts with the dynamical state of the nodes. We
study an adaptive dynamical network in which the structure changes on a slower time scale relative to the fast dynamics of the nodes. We
identify a phenomenon we refer to as recurrent adaptive chaotic clustering (RACC), in which chaos is observed on a slow time scale, while the
fast time scale exhibits regular dynamics. Such slow chaos is further characterized by long (relative to the fast time scale) regimes of frequency
clusters or frequency-synchronized dynamics, interrupted by fast jumps between these regimes. We also determine parameter values where
the time intervals between jumps are chaotic and show that such a state is robust to changes in parameters and initial conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0205458

Many complex dynamical systems have a network structure that
evolves (adapts) over time. Such systems are typical in neural
learning systems but also occur in a variety of other applica-
tions. A typical scenario is when the network structure changes
much slower than the dynamics of each individual node. In such
cases, many exciting multiscale phenomena occur that are impos-
sible in systems with a static network structure. In this paper, we
present the phenomenon of recurrent adaptive chaotic clustering
(RACC) in which the network structure changes slowly and chaot-
ically, while the node dynamics is fast and regular. In addition,
the fast dynamics recurrently changes from complete frequency
synchrony to frequency clusters of different types.

I. INTRODUCTION

Adaptive dynamical networks (ADN) appear in various appli-
cations ranging from neuroscience'~ to social™" or transportation”
networks. While dynamical networks with static connectivity can
describe synchronization phenomena and pattern formation in

networks with static structure,”’ ADNs allow a dynamic change
of the network structure and an interaction between this structural
dynamics and the dynamics of the network nodes.'"'>* ADNs are fun-
damental models for describing the learning of neuronal systems
due to neuronal plasticity.>"”

ADNs exhibit exciting new dynamical phenomena such as
frequency clusters,'""" recurrent synchronization,” self-organized
noise resistance,’ self-organized criticality,”’ heterogeneous
nucleation,” and others. For a more detailed overview, we refer to
the recent review'' and references therein. Despite being a versatile
class of models suitable for many applications, ADNs are challeng-
ing for a theoretical or numerical study due to their complexity,
which is usually reflected in their high dimensionality, multistability,
or the presence of multiple time scales.”*

This paper reports on the phenomenon of recurrent adaptive
chaotic clustering (RACC) in ADNs. More specifically, we describe
the emergence of a robust dynamical regime in which the system
exhibits “quasi-stationary” frequency clusters of various types. The
frequency clusters exist for a relatively long time, followed by a
rapid transition to another cluster or to a frequency-synchronized
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regime. The main difference with the previously reported recurrent
switching in ADNs”’ is that in our case the switching between these
quasi-stationary regimes is chaotic, and, thus, the length of each
clustering episode cannot be predicted for a longer time. Looking
at the observed phenomenon from the point of view of the theory of
multiscale systems, the reported effect represents slow chaos, where
the chaotic dynamics is manifested on the slow timescale of the cou-
pling weights, but the fast dynamics is regular. To understand this
phenomenon in detail, we consider a minimal model of ADN with
three oscillators and six slowly changing couplings.

The structure of the paper is as follows. In Sec. II, we intro-
duce the concept of adaptive dynamical networks and describe the
model under study in this paper. In Sec. 111, we present numerical
evidence of RACC for a minimal model of three phase oscillators
for specific parameter values, and in Sec. IV, we show that such a
behavior is robust to changes in parameters. In Sec. V, we compute
the Lyapunov exponents and show that the dynamics of the system
can be chaotic and the largest Lyapunov exponent is positive for a
large range of parameters. In Sec. VI, we present the new type of slow
chaotic dynamics and demonstrate that chaotic clustering exhibits
different partially synchronized states. Section VII contains our final
remarks.

Il. ADAPTIVE DYNAMICAL NETWORK MODEL

A dynamical network” " is defined as a set of N nodes, or ver-
tices, and L links, or edges. The topology of the connections is given
by the weighted connectivity matrix A = {«;},i,j = 1,2,..., N, with
nonzero real elements if the node j is connected to the node i and 0
otherwise. The state of the network is given by x = (x,x,...,2n),
where x; € R? is the d-dimensional state variable of each individual
node, and its dynamics can be written as

N
xi = filx t) + Zkijrij(xi)xj: 1), (1)

j=1

where f; defines the local dynamics of each node and I';(x;, x;, ) is
the coupling function. By allowing the coupling weights to dynam-
ically adapt depending on the state and the history of each node,
the network structure becomes part of the temporal evolution and
is not static anymore. We call such a system an adaptive dynamical
network (ADN)'5!%2%0 and define it as

N
X zﬁ(xi) t) + Z’Cijrij(xi) Xjs t)) (2)

j=1

Kij = gij(%xi %), 1), (3)

with g(x;, xj, t) being the adaptation function depending explicitly
on the state of the nodes i and j. This allows the network structure
to rearrange according to the states of the nodes, which in turn are
affected by this structure.

The interest in ADN of the form (2)-(3) has grown significantly
over the last years,'"" and several forms of adaptation rules have
been proposed in order to describe different dynamical systems and
phenomena.”’~** One basic type of adaptation rule that has gained a
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lot of attention recently is the following:'*'***-=*/

N
xi = filx) + ZKijFij(xi»xj)> (4)
=1
ki = —e [y + azhy (xi — x)] ®)

where it is assumed that the adaptation function h;(x; — x;) depends
only on the difference of the corresponding state vectors, analogous
to the spike-timing-dependent plasticity (STDP)."'** The base con-
nectivity structure is given by the matrix elements a; € R and the
parameter & > 0 is a timescale separation parameter.

In particular, we are interested in slow adaptation, which means
& < 1. Then, the dynamics of the nodes, Eq. (4), is much faster than
the dynamics of the network, and tools from the geometric singular
perturbation theory can be used to study such systems.*>*~** Indeed,
the slow-fast dynamics is one of the essential ingredients for the
emergence of recurrent synchronization” or excitability”’ in adap-
tive networks. With the slow change of the coupling weights «;;,
the dynamics in the fast layer (x) can exhibit different synchrony
patterns recurrently for different weights «.

Here, we are interested in the dynamics and synchronization
of coupled nonlinear oscillator systems. Models of phase oscillators,
such as the paradigmatic Kuramoto' and Kuramoto-Sakaguchi®
models, have been of major importance in the development of the
theory of synchronization, and it is widely known that we can
reduce a network of coupled nonlinear oscillators to a network of
phase oscillators given weak interactions.'***” Therefore, following
Egs. (4)-(5), we consider a network of N adaptively coupled phase
oscillators given by

. 1 &
G =i — 3 DKy sin(d; — ¢ +9), (©)

j=1

Ky = —¢ [k + agsin (¢ — ¢ + By) ] 7)

where ¢; € [0,27). We consider the same coupling and adaptation
functions for each pair of phase oscillators, and w; is the natural
frequency of the ith oscillator. The parameter § can be consid-
ered as a phase lag of the interaction,” and different §; control the
non-homogeneity of the adaptation function.'*>*

In the following Sec. I1I, we investigate the collective dynam-
ics of the network (6)-(7) with three phase oscillators, which is a
minimal model exhibiting RACC. For most numerical simulations,
the initial conditions are chosen randomly, with the phases, ¢;, dis-
tributed uniformly in the interval [0, 277) and the coupling weights,
Kij, in [—1, 1], unless explicitly stated otherwise. All numerical inte-
gration in this paper is performed using the 4th order Runge-Kutta
method implemented in Fortran.

lll. CHAOTIC RECURRENT CLUSTERING: NUMERICAL
EVIDENCE

To measure the collective dynamics of the network, we use
an observable that provides an average of the individual nodes’
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dynamics, namely, the Kuramoto order parameter, R(f), given by
1|
— i ()
R = ;:1: PGl (8)

R(f) measures the global phase synchronization of the network. If, at
a certain instant of time ¢, the phases are the same, R() = 1, whereas,
if the phases are spread incoherently over the interval [0,27),
R(#) = 0. Furthermore, by following the temporal evolution of R(),
we can detect different synchronization states, such as frequency
synchronization, which corresponds to a slowly changing R(f) dur-
ing some time interval, and the loss of phase relation, which corre-
sponds to a rapidly oscillatory behavior of R(#), in which we observe
partial or no frequency synchronization.”’

The phenomenon of recurrent synchronization corresponds to
alternating time intervals of high activity, i.e., fast changes of the
collective observable, and time intervals of low activity. It has been
reported by Thiele et al.”’ for two populations of Hodgkin-Huxley
neurons’® with asymmetric STDP, for a reduced model of only two
interacting Hodkin-Huxley neurons with asymmetric STDP, and
also for two adaptively coupled phase oscillators with asymmetric
adaptation rules, defined by Egs. (6) and (7). Here, we study three
adaptively coupled phase oscillators, and our choice of parameters
is inspired by the work of Thiele et al.”” We choose the connectiv-
ity matrix elements a; in such a way that there is no connection
between oscillators 2 and 3, i.e., ;3 = a3, = 0. We fix all parame-
ters to the values shown in Table I, and a;3, which corresponds to
the amplitude of the influence of oscillator 3 on oscillator 1, is con-
sidered as active parameter. To quantify frequency synchronization,

pubs.aip.org/aip/cha

TABLE I. Parameters used in the simulations.

Parameter Value
Q] =w; — W, 0.1
Qz =w; — w3 0.12
e 2.0x107*
8 /4
ap 0.375
az 1.5
a 0.0
asy 1.2
as 0.0
Bz 4 /3
Bis l+m
B /2
,331 —37/2 +0.1

we measure the mean phase velocity of each oscillator as

] 1 [To+T |
(@) = ?/ ¢i(t) dt 9

To
in windows of size T = 300 and say that oscillators i and j are
frequency synchronized if |<¢,) — <¢])| < 0.01. If all oscillators are
synchronized to each other, we have complete synchronization and
one single cluster, labeled as Cy;jx. When only two oscillators are
synchronized, we have partial synchronization and two clusters, one
composed of two synchronized oscillators and one composed of a
single asynchronous one. We label this state as Cy;jyx. For the case
of complete asynchrony, we have three clusters and label this state
as C,' ke

1.04(a;) 1 Cli23)
- FCl1,2),3
=05 " Cl1.3).2
C1,{2,3)
0.0 FC1,2,3
0.5
(a2)
- Kn2
% 00 — K3
< — K
— K
-0.5 T
4 6

t(x10%)

FIG. 1. The order parameter, R(f) [Eq. (8)], and the coupling weights, «;(), as a function of time for the parameters in Table | with (a) a3 = 0.1, (b) a3 = 0.6, and
(c) a13 = 1.1. The top row shows magnifications in the order parameter for the corresponding regions in the dashed boxes.
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Depending on the value of a3, we can obtain different solu-
tions for this model, such as the trivial fixed point solution for the
coupling weights, «;; [Fig. 1(a)]. This corresponds to a constant value
of the R(t) and complete frequency synchronization, and we do not
observe recurrent synchronization. As we increase the value of a3,
recurrent synchronization emerges [Fig. 1(b)]. We clearly observe
several transitions between slow changing to a fast oscillating order
parameter, with slow periodic oscillations in the coupling weights
during the whole depicted interval. The color scale in the first row
indicates all possible synchronization states, with blue, green (all
three), and red representing complete, partial, and no synchro-
nization, respectively. In Fig. 1(b,), there is a seemingly periodic
transition among these synchronization states. For larger values of
ai3, the transition turns out to be rather irregular [Fig. 1(c)], and we
observe no periodicity in either the order parameter or the coupling
weights.

Interestingly, for some periods of time, oscillators 2 and 3 are
synchronized even though there is no direct link between them [light
green in Figs. 1(b) and 1(c)]. Such a phenomenon is known as relay
(or remote) synchronization,”” i.e., synchronization between two
not directly connected oscillators in a network.

IV. NUMERICAL BIFURCATION ANALYSIS OF THE
RECURRENT ADAPTIVE CHAOTIC CLUSTERING

In order to study the influence of the parameters and the
robustness of this newly observed phenomenon, RACC, we compute

ARTICLE pubs.aip.org/aip/cha

the value of one of the coupling weights, «,, when each synchro-
nization (clustering) state begins and the time spent in each one of
them as a function of the parameter a;; (Fig. 2). The choice of the
observable ki, is not important here, only that it is one of the slow
coupling variables «;;, since the fast phase variables fluctuate on a
faster timescale.

We use random initial conditions for a;3 = 0 and for each new
parameter value, the initial condition corresponds to the last state
of the previous value of a3, i.e., we perform a brute-force (quasi-
adiabatic) numerical continuation. We find no recurrent clustering
for values of a;3 smaller than approximately 0.2. Beyond this value,
the diagram exhibits mainly two different behaviors: ordered (peri-
odic dynamics) and irregular (chaotic dynamics) appearance of
clusters. Until a;3 ~ 1.0, we observe a periodic clustering, with all
cluster states present except the cluster Cy; 3, (olive green in Fig. 2).
When the influence of oscillator 3 on oscillator 1 increases, i.e., for
relatively large values of a3, we no longer observe the periodic clus-
tering. Instead, the structure of the diagram is highly irregular. For
some large values of a3, there are intervals in which the diagram
becomes ordered again, resembling periodic windows in classi-
cal bifurcation diagrams [Figs. 2(a) and 2(b)]. Also, we notice the
emergence of the cluster state Cyy3),. After a;3 & 1.45, the diagram
becomes regular again.

V. NUMERICAL LYAPUNOV EXPONENTS

The dynamics of the model can be quantified by calculating the
Lyapunov exponents (LEs).”"*” In our case of only three oscillators,

(b\ >

C(1,2,3)

Ci1,2).3

Cl1,3),2

Ci23

1.0 1.2 1.4

FIG. 2. (a) and (c) The value of x4, when each of the clustering regimes begins, and (b) and (d) the time spent in each one of the clustering regimes as a function of ay3.
Panels (a) and (b) are magnifications of the dashed black box in (c) and (d), respectively. The total integration time is 1.0 x 108, the transient time is 3.0 x 10°, and the time

step is 0.02. Other parameters are in Table .
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FIG. 3. The Lyapunov exponents as a function of a;3. The total integration time
is 1.0 x 107, the transient time is 3.0 x 10°, and the time step is 0.02. Other
parameters are in Table |.

the dynamics of the fast system (the phases) for constant coupling
weights (without adaptation) cannot be chaotic because the dynam-
ics is effectively two-dimensional when written in terms of the phase
differences 0, = ¢; — ¢, and 6, = ¢, — ¢;. This is a result of the
phase shift symmetry ¢; + const of the phase oscillator model. Also,
additional zero LEs appear due to such a symmetry.

However, the whole adaptive model (6)-(7) is high-dimensional
and can exhibit chaotic solutions. In our case, we have nine equa-
tions and hence nine characteristic exponents. Our computation
of the LEs follows Benettin’s algorithm,”"** which consists of inte-
grating the linearized system simultaneously with the equations
of motion and includes the Gram-Schmidt re-orthonormalization
procedure. We compute the LEs as a function of the parameter a;3
(Fig. 3) using a transient time of 3.0 x 10° and total integration time
of 1.0 x 107, with a time step of 0.02.

The periodic dynamics persists for a;3 < 1.0, ie., there are
no positive LEs, and for larger a,3, the dynamics becomes chaotic,
characterized by a positive largest Lyapunov exponent, 1; > 0. We
observe several drops of A; toward zero in the ordered regions
of the bifurcation diagram (Fig. 2), indicating that these regions
indeed correspond to periodic windows. Therefore, by adding a
third oscillator to the network, it is possible to observe recurrent
periodic synchronization as well as recurrent chaotic synchroniza-
tion depending on the values of the connectivity matrix a;;, which
was not possible for the case of two oscillators.”’ Note that the small
blue positive peaks of the largest Lyapunov exponent for param-
eter values a;; between 0.6 and 0.7 correspond to a state where
it is difficult to distinguish numerically between weakly chaotic or
quasiperiodic behavior (even using phase portraits), and we do not
focus on them here.

By fixing a;; and changing ¢ (Fig. 4), we find that the largest
Lyapunov exponent in the chaotic regime scales as ~ ¢, which is an
indication that the chaotic dynamics occurs on the slow timescale.
Slow chaos means that the chaotic dynamics takes place on the
timescale 1/¢, and hence the largest Lyapunov exponent should be of
the order of ¢. This, however, does not mean that the behavior of A;
must be exactly linear. Exactly linear behavior would be in the case
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10-5 104 10-3 10-2
E

FIG. 4. The largest Lyapunov exponent, 1+, as a function of & with (a) a3 = 1.0,
(b) @13 = 1.1, (c) a3 = 1.2, and (d) a13 = 1.3. The red circles were obtained by
performing a max pooling in windows of 12 elements and the red dashed line rep-
resents the optimal fit based on the function f(¢) = const x ¢ for these circles.
The last two circles were excluded from this fitting process. The total integration
time is 5.0 x 108, the transient time is 3.0 x 10, and the time step is 0.02. Other
parameters are in Table |.

of a simple time rescaling of a fixed chaotic attractor. In our system
here, the dynamics also changes with . This leads to periodic win-
dows and A, has a complex behavior. However, Fig. 4 shows that the
amplitude of the oscillations of X, scales proportionally to €. Intu-
itively, if we look only at the maxima of A, we observe the points of
“most developed” chaos between two drops of 1;, and this regime
has a linear dependence on ¢. Of course, this is not a rigorous proof
of slow chaos, but rather an additional numerical support for the
statement that chaos takes place on the 1/¢ timescale. In Sec. VI, we
look at the dynamics of the slow variables in more detail.

VI. DYNAMICS OF THE SLOW VARIABLES

Figure 5 displays the slow dynamics in the (k13,421) plane.
When the dynamics is periodic [Figs. 5(a)-5(e) and 5(g)], the pro-
jection into this plane shows limit cycles passing through regions
of different synchronization regimes, which clarifies the behavior of
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Ci1,2,3)
g 001 ] ]
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0.5
g 0.0 Cii3)2
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0.5 Ci,(2,3)
g 001
Ci,2,3
-0.5 T

202 -01 00 01

02-02 —-01 00
K12 K12
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FIG. 5. Projections in the k1, x 1 plane for (a) a3 = 0.35, (b) a13 = 0.50, (c) a13 = 0.60, (d) a3 = 0.80, () a3 = 1.0, (f) a13 = 1.1, (g) a13 = 1.2, (h) a3 = 1.25, and
(i) @13 = 1.4. The total integration time is 5.0 x 105, the transient time is 3.0 x 10°, and the time step is 0.02. Other parameters are in Table .

the order parameter in Figs. 1(b) and 1(c). The colors correspond
to the type of clustering in Fig. 1. In particular, blue indicates the
equilibria of the fast system (slow manifolds), and the slow motions
along a set of such equilibria, when all three oscillators are fre-
quency synchronized. The different shades of green correspond to
partial clusterings (see colorbar in Fig. 5) and oscillations of the
fast variables, which are averaged in the ¥ dynamics. This type of
dynamics, which is a more complex type of recurrent synchroniza-
tion than the one reported in Ref. 20, is shown in Figs. 5(f), 5(h),
and 5(i). This chaotic motion is possible because the dimensional-
ity of the slow subsystem «;; is 6, which gives enough dimensions
for creating chaotic dynamics. In contrast, two adaptively coupled
phase oscillators have only a two-dimensional slow subspace, which
does not allow chaotic solutions. Similarly to the regular recurrent
clustering motion, the chaotic clustering exhibits different partially
synchronized states (green) as well as complete frequency synchro-
nization (blue) and complete desynchronization (red), depending
on the position in the «; subspace. We emphasize that the main
features for the emergence of recurrent synchronization, which we
have extended to RACC, are the asymmetric adaptation rules and
the temporal separation between the adaptation and the dynamics of
the individual nodes, as reported by Thiele et al.”’ As for the emer-
gence of RACC, an additional requirement is a slow subsystem with

at least three dimensions. However, a dimensionality higher than 3
alone is not enough for the emergence of RACC, as the asymmet-
rical adaptation rules are also essential. Therefore, a dimensionality
of 3 is a necessary but not sufficient condition for the emergence of
RACC.

VII. CONCLUSIONS

In summary, by using a minimal model of three adaptively
coupled phase oscillators, we have presented the phenomenon of
recurrent adaptive chaotic clustering (RACC). This phenomenon is
characterized by quasi-stationary frequency clusters that persist for
a time interval of order &, where 1/¢ is the slow time scale of adap-
tation. When a quasi-stationary cluster terminates, either a different
type of cluster appears or synchrony, which is also quasi-stationary.
We show that such recurrent behavior can be chaotic for a large set
of parameter values. To the best of our knowledge, this phenomenon
is new, and it is caused by the adaptation of the coupling weights,
making it a characteristic of the class of ADNGs.

From the point of view of multiscale systems,”** the presented
phenomena provide an interesting example where the slow dynam-
ics is chaotic while the fast (layer) dynamics is regular. We pro-
vide evidence for slow chaos by computing the maximal Lyapunov
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exponent and its dependence on ¢, as well as a brute-force bifurca-
tion diagram and a projection of the dynamics onto a plane of two
slow variables. Any theoretical proof in this direction seems to be
extremely challenging, and we would wonder if such a proof appears
in the future for a possibly even simpler model of an adaptive
network or some other type of slow—fast system.
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